Motor Bearing Fault Diagnosis based on Hilbert-Huang transform and Convolutional Neural Networks

IF 0.2 Q4 AREA STUDIES
D. Du, Jian Zhang, Youtong Fang, Jie Tian
{"title":"Motor Bearing Fault Diagnosis based on Hilbert-Huang transform and Convolutional Neural Networks","authors":"D. Du, Jian Zhang, Youtong Fang, Jie Tian","doi":"10.1109/ITECAsia-Pacific56316.2022.9941910","DOIUrl":null,"url":null,"abstract":"Motor Bearing vibration signal contains its operating state information and can be used for bearing fault diagnosis. Facing the nonlinear and non-stationary signal of bearing vibration, the accuracy of existing methods still needs to be improved. In this paper, Hilbert-Huang transform is proposed to process these signals and obtain the time frequency spectrums. Then Convolutional neural network is applied to diagnose bearing faults for its perfect ability of image recognition. Comparing with other signal processing methods, this method achieves better accuracy.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"91 1","pages":"1-5"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Motor Bearing vibration signal contains its operating state information and can be used for bearing fault diagnosis. Facing the nonlinear and non-stationary signal of bearing vibration, the accuracy of existing methods still needs to be improved. In this paper, Hilbert-Huang transform is proposed to process these signals and obtain the time frequency spectrums. Then Convolutional neural network is applied to diagnose bearing faults for its perfect ability of image recognition. Comparing with other signal processing methods, this method achieves better accuracy.
基于Hilbert-Huang变换和卷积神经网络的电机轴承故障诊断
电机轴承振动信号包含了其运行状态信息,可用于轴承故障诊断。面对轴承振动的非线性和非平稳信号,现有方法的精度仍有待提高。本文提出利用Hilbert-Huang变换对这些信号进行处理,得到信号的时频频谱。利用卷积神经网络良好的图像识别能力,将其应用于轴承故障诊断。与其他信号处理方法相比,该方法具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信