Hardness and tensile strength of carbon nanoparticle-lithium borate composites

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manpreet Kaur, J. Bharj
{"title":"Hardness and tensile strength of carbon nanoparticle-lithium borate composites","authors":"Manpreet Kaur, J. Bharj","doi":"10.1080/02670836.2023.2184584","DOIUrl":null,"url":null,"abstract":"Carbon nanoparticle (CNP)-lithium borate glass composites are synthesised by melt-quenching technique to study the influence of CNPs addition on the mechanical properties of the primary glass. Three different glass composites are fabricated by varying the weight% of CNPs. The hardness and tensile strength are found to increase by 2.65 times the primary glass with the addition of 0.4 weight% of CNPs. The homogeneous dispersion and close-packing of nanoparticles achieved in the resultant glass matrix account for this improvement. The closed-packed structure reduces the free volume between molecules, thereby limiting their movement and enhancing interfacial bonding. The formation of such a cross-linked structure with the addition of CNPs is supported by density measurements, electron microscopy images, and glass transition temperature studies.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"26 1","pages":"1835 - 1839"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2184584","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanoparticle (CNP)-lithium borate glass composites are synthesised by melt-quenching technique to study the influence of CNPs addition on the mechanical properties of the primary glass. Three different glass composites are fabricated by varying the weight% of CNPs. The hardness and tensile strength are found to increase by 2.65 times the primary glass with the addition of 0.4 weight% of CNPs. The homogeneous dispersion and close-packing of nanoparticles achieved in the resultant glass matrix account for this improvement. The closed-packed structure reduces the free volume between molecules, thereby limiting their movement and enhancing interfacial bonding. The formation of such a cross-linked structure with the addition of CNPs is supported by density measurements, electron microscopy images, and glass transition temperature studies.
纳米碳-硼酸锂复合材料的硬度和抗拉强度
采用熔融淬火技术合成纳米碳-硼酸锂玻璃复合材料,研究纳米碳对原玻璃力学性能的影响。通过改变CNPs的重量%,制备了三种不同的玻璃复合材料。当CNPs的质量分数为0.4 %时,玻璃的硬度和抗拉强度是原玻璃的2.65倍。纳米颗粒在玻璃基体中的均匀分散和紧密堆积是这种改进的原因。封闭填充结构减少了分子之间的自由体积,从而限制了它们的运动并增强了界面键合。通过密度测量、电子显微镜图像和玻璃化转变温度的研究,支持了CNPs的加入形成这种交联结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信