Some Properties and Applications of a New General Triple Integral Transform "Gamar Transform"

A. Sedeeg
{"title":"Some Properties and Applications of a New General Triple Integral Transform \"Gamar Transform\"","authors":"A. Sedeeg","doi":"10.1155/2023/5527095","DOIUrl":null,"url":null,"abstract":"The goal of this study is to suggest a new general triple integral transform known as Gamar transform. Next, we compare the current transform to a number of existing triple integral transforms such as those by Laplace, Sumudu, Elzaki, Aboodh, and Laplace–Aboodh–Sumudu. We outline its essential properties and prove some important results, including linearity property, existence theorem, triple convolution theorem, and derivatives properties. Moreover, the proposed new transform is applied to solve some partial differential equations (PDEs) such as Laplace, Mboctara, and Wave equations. The capacity of general triple integral transforms to change PDEs into simple algebraic equations is demonstrated.","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"52 1","pages":"5527095:1-5527095:21"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5527095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study is to suggest a new general triple integral transform known as Gamar transform. Next, we compare the current transform to a number of existing triple integral transforms such as those by Laplace, Sumudu, Elzaki, Aboodh, and Laplace–Aboodh–Sumudu. We outline its essential properties and prove some important results, including linearity property, existence theorem, triple convolution theorem, and derivatives properties. Moreover, the proposed new transform is applied to solve some partial differential equations (PDEs) such as Laplace, Mboctara, and Wave equations. The capacity of general triple integral transforms to change PDEs into simple algebraic equations is demonstrated.
一类新的通用三重积分变换“Gamar变换”的一些性质及应用
本研究的目的是提出一种新的通用三重积分变换,称为伽玛变换。接下来,我们将当前的变换与一些现有的三重积分变换进行比较,例如拉普拉斯、Sumudu、Elzaki、Aboodh和拉普拉斯- Aboodh - Sumudu的变换。我们概述了它的基本性质,并证明了一些重要的结果,包括线性性质、存在性定理、三重卷积定理和导数性质。并将该变换应用于求解拉普拉斯方程、Mboctara方程和波动方程等偏微分方程。证明了一般三重积分变换将偏微分方程转化为简单代数方程的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信