Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach

M. Tarkowski, Mateusz Burtowy, M. Rzymowski, K. Nyka, M. Groth, L. Kulas
{"title":"Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach","authors":"M. Tarkowski, Mateusz Burtowy, M. Rzymowski, K. Nyka, M. Groth, L. Kulas","doi":"10.1109/ETFA.2019.8868967","DOIUrl":null,"url":null,"abstract":"In this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using low-profile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely on received signal strength (RSS) values recorded at the antenna output port for different directional radiation patterns produced by the antenna steering circuit, the algorithm is well-suited for IoT nodes based on inexpensive radio transceivers. Measurement results indicate that, although the antenna can provide 8 unique main beam directions, SVM-based DoA of unknown incoming signals can successfully be estimated with good accuracy in a fast way using limited number of radiation patterns. Consequently, such an approach can be used in efficient location-based security methods in Industrial Internet of Things (IIoT) applications.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"39 1","pages":"1759-1763"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8868967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using low-profile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely on received signal strength (RSS) values recorded at the antenna output port for different directional radiation patterns produced by the antenna steering circuit, the algorithm is well-suited for IoT nodes based on inexpensive radio transceivers. Measurement results indicate that, although the antenna can provide 8 unique main beam directions, SVM-based DoA of unknown incoming signals can successfully be estimated with good accuracy in a fast way using limited number of radiation patterns. Consequently, such an approach can be used in efficient location-based security methods in Industrial Internet of Things (IIoT) applications.
利用支持向量机提高基于rss的低轮廓ESPAR天线DoA估计精度
在本文中,我们展示了如何使用低轮廓电子可控寄生阵列散热器(ESPAR)天线进行到达方向(DoA)估计的整体性能,该天线已被提出用于物联网(IoT)应用,当应用支持向量机(SVM)方法时可以显着提高。由于本文使用的基于svm的DoA估计方法仅依赖于在天线输出端口记录的由天线转向电路产生的不同方向辐射方向图的接收信号强度(RSS)值,因此该算法非常适合基于廉价无线电收发器的物联网节点。测量结果表明,虽然该天线可以提供8个唯一的主波束方向,但基于支持向量机的未知输入信号的DoA可以在有限的辐射方向图中快速准确地估计出来。因此,这种方法可用于工业物联网(IIoT)应用中高效的基于位置的安全方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信