Accounting for Part Pose Estimation Uncertainties during Trajectory Generation for Part Pick-Up Using Mobile Manipulators

Shantanu Thakar, P. Rajendran, Vivek Annem, A. Kabir, Satyandra K. Gupta
{"title":"Accounting for Part Pose Estimation Uncertainties during Trajectory Generation for Part Pick-Up Using Mobile Manipulators","authors":"Shantanu Thakar, P. Rajendran, Vivek Annem, A. Kabir, Satyandra K. Gupta","doi":"10.1109/ICRA.2019.8793501","DOIUrl":null,"url":null,"abstract":"To minimize the operation time, mobile manipulators need to pick-up parts while the mobile base and the gripper are moving. The gripper speed needs to be selected to ensure that the pick-up operation does not fail due to uncertainties in part pose estimation. This, in turn, affects the mobile base trajectory. This paper presents an active learning based approach to construct a meta-model to estimate the probability of successful part pick-up for a given level of uncertainty in the part pose estimate. Using this model, we present an optimization-based framework to generate time-optimal trajectories that satisfy the given level of success probability threshold for picking-up the part.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"74 1","pages":"1329-1336"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

To minimize the operation time, mobile manipulators need to pick-up parts while the mobile base and the gripper are moving. The gripper speed needs to be selected to ensure that the pick-up operation does not fail due to uncertainties in part pose estimation. This, in turn, affects the mobile base trajectory. This paper presents an active learning based approach to construct a meta-model to estimate the probability of successful part pick-up for a given level of uncertainty in the part pose estimate. Using this model, we present an optimization-based framework to generate time-optimal trajectories that satisfy the given level of success probability threshold for picking-up the part.
基于移动机械手的零件提取轨迹生成过程中零件姿态估计的不确定性
为了最大限度地减少操作时间,移动机械手需要在移动基座和夹持器运动时取件。需要选择抓取器的速度,以确保抓取操作不会由于部分姿态估计的不确定性而失败。这反过来又影响了移动基地的轨迹。本文提出了一种基于主动学习的方法来构建一个元模型来估计零件姿态估计中给定不确定性水平下成功拾取零件的概率。使用该模型,我们提出了一个基于优化的框架,以生成满足给定成功概率阈值水平的时间最优轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信