Dynamic Analysis of the Multi-state Reliability System with Priority Repair Discipline

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Aihemaitijiang Yumaier, Ehmet Kasim
{"title":"Dynamic Analysis of the Multi-state Reliability System with Priority Repair Discipline","authors":"Aihemaitijiang Yumaier,&nbsp;Ehmet Kasim","doi":"10.1007/s10255-023-1079-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers a multi-state repairable system that is composed of two classes of components, one of which has a priority for repair. First, we investigate the well-posedenss of the system by applying the operator semigroup theory. Then, using Greiner’s idea and the spectral properties of the corresponding operator, we obtain that the time-dependent solution of the system converges strongly to its steady-state solution.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"665 - 694"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1079-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a multi-state repairable system that is composed of two classes of components, one of which has a priority for repair. First, we investigate the well-posedenss of the system by applying the operator semigroup theory. Then, using Greiner’s idea and the spectral properties of the corresponding operator, we obtain that the time-dependent solution of the system converges strongly to its steady-state solution.

具有优先修复纪律的多状态可靠性系统动态分析
本文研究了一个多状态可修复系统,该系统由两类组件组成,其中一类组件具有优先修复权。首先,我们运用算子半群理论研究了该系统的问题。然后,利用 Greiner 的思想和相应算子的谱特性,我们得到该系统随时间变化的解强烈收敛于其稳态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信