{"title":"Design and manufacture of high-performance microbatteries: lithium and beyond","authors":"Feiyang Chen, Zheng-Long Xu","doi":"10.20517/microstructures.2022.10","DOIUrl":null,"url":null,"abstract":"The accelerated development of miniaturized and customized electronics has stimulated the demand for high-energy microbatteries (MBs) as on-chip power sources for autonomous state operations. However, commercial MBs with thin-film configurations exhibit insufficient energy and power density due to their limited active materials and sluggish ion diffusion kinetics. In order to simultaneously enhance electrochemical performance and maintain low-cost production, efforts have been devoted to constructing three-dimensional battery architectures. This review summarizes the state-of-the-art progress in designing and fabricating microelectrodes for microbattery assembly, including the top-down etching and bottom-up printing techniques, with a particular focus on elucidating the correlations between electrode structures, battery performance, and cost-effectiveness. More importantly, advancements in post-lithium batteries based on sodium, zinc and aluminum are also surveyed to offer alternative options with potentially higher energy densities and/or lower battery manufacturing costs. The applications of advanced MBs in on-chip microsystems and wearable electronics are also highlighted. Finally, conclusions and perspectives for the future development of MBs are proposed.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"56 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.10","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 3
Abstract
The accelerated development of miniaturized and customized electronics has stimulated the demand for high-energy microbatteries (MBs) as on-chip power sources for autonomous state operations. However, commercial MBs with thin-film configurations exhibit insufficient energy and power density due to their limited active materials and sluggish ion diffusion kinetics. In order to simultaneously enhance electrochemical performance and maintain low-cost production, efforts have been devoted to constructing three-dimensional battery architectures. This review summarizes the state-of-the-art progress in designing and fabricating microelectrodes for microbattery assembly, including the top-down etching and bottom-up printing techniques, with a particular focus on elucidating the correlations between electrode structures, battery performance, and cost-effectiveness. More importantly, advancements in post-lithium batteries based on sodium, zinc and aluminum are also surveyed to offer alternative options with potentially higher energy densities and/or lower battery manufacturing costs. The applications of advanced MBs in on-chip microsystems and wearable electronics are also highlighted. Finally, conclusions and perspectives for the future development of MBs are proposed.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4