Embedded self-circulation of liquid fuel for a micro direct methanol fuel cell

D. D. Meng, C. Kim
{"title":"Embedded self-circulation of liquid fuel for a micro direct methanol fuel cell","authors":"D. D. Meng, C. Kim","doi":"10.1109/MEMSYS.2007.4433020","DOIUrl":null,"url":null,"abstract":"This paper introduces a micro direct methanol fuel cell (muDMFC) with an embedded self-pumping mechanism to deliver liquid fuel. The fuel is propelled by the CO2 bubbles generated by the fuel-cell electrochemical reaction, and the bubbles are removed from the system during the self-pumping process. Furthermore, the pumping rate is self- regulated by the reaction, i.e., by the electric load. By eliminating the need for a pump and gas/liquid separator, our design allows much simpler fuel-cell systems, which is especially beneficial for miniaturization. Although we test with muDMFC in this paper, the mechanism applies to other membrane electrode assembly (MEA)-based fuel cells with organic liquid fuels as well.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"64 1","pages":"85-88"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper introduces a micro direct methanol fuel cell (muDMFC) with an embedded self-pumping mechanism to deliver liquid fuel. The fuel is propelled by the CO2 bubbles generated by the fuel-cell electrochemical reaction, and the bubbles are removed from the system during the self-pumping process. Furthermore, the pumping rate is self- regulated by the reaction, i.e., by the electric load. By eliminating the need for a pump and gas/liquid separator, our design allows much simpler fuel-cell systems, which is especially beneficial for miniaturization. Although we test with muDMFC in this paper, the mechanism applies to other membrane electrode assembly (MEA)-based fuel cells with organic liquid fuels as well.
微型直接甲醇燃料电池中液体燃料的嵌入式自循环
本文介绍了一种内置自抽送机构的微型直接甲醇燃料电池(muDMFC)。燃料由燃料电池电化学反应产生的CO2气泡推进,气泡在自抽气过程中从系统中去除。此外,泵送速率是由反应,即由电负荷自我调节的。通过消除对泵和气液分离器的需求,我们的设计使燃料电池系统变得更加简单,这对小型化特别有利。虽然我们在本文中测试了muDMFC,但该机制也适用于其他基于膜电极组件(MEA)的有机液体燃料燃料电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信