Logics of upsets of De Morgan lattices

Pub Date : 2023-07-31 DOI:10.1002/malq.202100076
Adam Přenosil
{"title":"Logics of upsets of De Morgan lattices","authors":"Adam Přenosil","doi":"10.1002/malq.202100076","DOIUrl":null,"url":null,"abstract":"<p>We study logics determined by matrices consisting of a De Morgan lattice with an upward closed set of designated values, such as the logic of non-falsity preservation in a given finite Boolean algebra and Shramko's logic of non-falsity preservation in the four-element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice-theoretic notion of an <i>n</i>-filter. We study the logics of all (complete, consistent, and classical) <i>n</i>-filters on De Morgan lattices, which are non-adjunctive generalizations of the four-valued logic of Belnap and Dunn (of the three-valued logics of Priest and Kleene, and of classical logic). We then show how to find a finite Hilbert-style axiomatization of any logic determined by a finite family of prime upsets of finite De Morgan lattices and a finite Gentzen-style axiomatization of any logic determined by a finite family of filters on finite De Morgan lattices. As an application, we axiomatize Shramko's logic of anything but falsehood.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study logics determined by matrices consisting of a De Morgan lattice with an upward closed set of designated values, such as the logic of non-falsity preservation in a given finite Boolean algebra and Shramko's logic of non-falsity preservation in the four-element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice-theoretic notion of an n-filter. We study the logics of all (complete, consistent, and classical) n-filters on De Morgan lattices, which are non-adjunctive generalizations of the four-valued logic of Belnap and Dunn (of the three-valued logics of Priest and Kleene, and of classical logic). We then show how to find a finite Hilbert-style axiomatization of any logic determined by a finite family of prime upsets of finite De Morgan lattices and a finite Gentzen-style axiomatization of any logic determined by a finite family of filters on finite De Morgan lattices. As an application, we axiomatize Shramko's logic of anything but falsehood.

分享
查看原文
德摩根格的逆逻辑
研究了由指定值的上闭集的De Morgan格构成的矩阵所决定的逻辑,如给定有限布尔代数中的不假保存逻辑和四元子直接不可约De Morgan格中的Shramko的不假保存逻辑。研究这些逻辑的关键工具是n滤波器的格理论概念。我们研究了De Morgan格上的所有(完全、一致和经典)n-滤波器的逻辑,它们是Belnap和Dunn的四值逻辑(Priest和Kleene的三值逻辑以及经典逻辑)的非辅助推广。然后,我们展示了如何找到由有限De Morgan格的有限素数逆集决定的任何逻辑的有限hilbert式公理化和由有限De Morgan格上的有限滤子族决定的任何逻辑的有限根曾式公理化。作为一个应用,我们公理化了Shramko的逻辑,除了假。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信