{"title":"On-skin Based Soft Triboelectric Nanogenerator for Electronics Skin","authors":"Jiwon Park, Da Eun Kim, Youn Tae Kim","doi":"10.1109/NEMS50311.2020.9265583","DOIUrl":null,"url":null,"abstract":"Currently, with the transition to the ubiquitous era, next-generation electronic devices such as artificial electronic skin, wearable computers, and flexible displays have been developed that are light and portable and can be easily applied to human life. Therefore, in order to supply power to such devices, the importance for the development of an energy devices is increasing. To address this issue, a stretchable on-skin based triboelectric nanogenerator (TENG) that contacts to the skin and can generate energy from the free movement is proposed. It is easier to manufacture than the previously reported body-attachable TENG and is ultrathin with a total thickness of 200 μm. As an electrode, the conductive thread was formed in a winding pattern on an elastomer substrate, showed high elasticity of 100% or more, and stability without distortion even under repeated strain. It adhered to the back hand to generate an electrical output of 280 V and 12 μA, and the test on the electronic drive demonstrated its practical applicability. The on-skin based TENG may be utilized as a stretchable and flexible energy device that can replace the conventional bulk battery, and has the potential to be an important core technology in combination with E-skin and wearable sensors.","PeriodicalId":6787,"journal":{"name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","volume":"15 1","pages":"273-276"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS50311.2020.9265583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Currently, with the transition to the ubiquitous era, next-generation electronic devices such as artificial electronic skin, wearable computers, and flexible displays have been developed that are light and portable and can be easily applied to human life. Therefore, in order to supply power to such devices, the importance for the development of an energy devices is increasing. To address this issue, a stretchable on-skin based triboelectric nanogenerator (TENG) that contacts to the skin and can generate energy from the free movement is proposed. It is easier to manufacture than the previously reported body-attachable TENG and is ultrathin with a total thickness of 200 μm. As an electrode, the conductive thread was formed in a winding pattern on an elastomer substrate, showed high elasticity of 100% or more, and stability without distortion even under repeated strain. It adhered to the back hand to generate an electrical output of 280 V and 12 μA, and the test on the electronic drive demonstrated its practical applicability. The on-skin based TENG may be utilized as a stretchable and flexible energy device that can replace the conventional bulk battery, and has the potential to be an important core technology in combination with E-skin and wearable sensors.