{"title":"Effect of fibre length on fatigue of short carbon fibre/epoxy composite","authors":"S.A. Hitchen, S.L. Ogin, P.A. Smith","doi":"10.1016/0010-4361(95)93673-8","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of fibre length on the fatigue of a random short carbon fibre/epoxy composite containing 1, 5 or 15 mm length fibres has been studied. All laminates gave a sloping S-N curve with longer fatigue lives obtained at decreasing peak stresses. The fatigue life was independent of fibre length at any peak strain, within experimental variation. Damage accumulation during fatigue cycling is studied in terms of residual strength and modulus reduction. Both techniques suggest that fatigue failure is the result of a ‘sudden death’ mode of failure. Finally, the effect of matrix type on the fatigue life of laminates containing 5 mm length fibres was investigated by adding a greater quantity of flexibilizer to the epoxy matrix. Shorter fatigue lives were obtained for laminates having the more flexible matrix.</p></div>","PeriodicalId":100296,"journal":{"name":"Composites","volume":"26 4","pages":"Pages 303-308"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0010-4361(95)93673-8","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0010436195936738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
The effect of fibre length on the fatigue of a random short carbon fibre/epoxy composite containing 1, 5 or 15 mm length fibres has been studied. All laminates gave a sloping S-N curve with longer fatigue lives obtained at decreasing peak stresses. The fatigue life was independent of fibre length at any peak strain, within experimental variation. Damage accumulation during fatigue cycling is studied in terms of residual strength and modulus reduction. Both techniques suggest that fatigue failure is the result of a ‘sudden death’ mode of failure. Finally, the effect of matrix type on the fatigue life of laminates containing 5 mm length fibres was investigated by adding a greater quantity of flexibilizer to the epoxy matrix. Shorter fatigue lives were obtained for laminates having the more flexible matrix.