Resilience of Linear Systems to Partial Loss of Control Authority

Jean-Baptiste Bouvier, Melkior Ornik
{"title":"Resilience of Linear Systems to Partial Loss of Control Authority","authors":"Jean-Baptiste Bouvier, Melkior Ornik","doi":"10.48550/arXiv.2209.08034","DOIUrl":null,"url":null,"abstract":"After a loss of control authority over thrusters of the Nauka module, the International Space Station lost attitude control for 45 minutes with potentially disastrous consequences. Motivated by this scenario, we investigate the continued capability of control systems to perform their task despite partial loss of authority over their actuators. We say that a system is resilient to such a malfunction if for any undesirable inputs and any target state there exists an admissible control driving the state to the target. Building on controllability conditions and differential games theory, we establish a necessary and sufficient condition for the resilience of linear systems. As their task might be time-constrained, ensuring completion alone is not sufficient. We also want to estimate how much slower the malfunctioning system is compared to its nominal performance. Relying on Lyapunov theory we derive analytical bounds on the reach times of the nominal and malfunctioning systems in order to quantify their resilience. We illustrate our work on the ADMIRE fighter jet model and on a temperature control system.","PeriodicalId":13196,"journal":{"name":"IEEE Robotics Autom. Mag.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics Autom. Mag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

After a loss of control authority over thrusters of the Nauka module, the International Space Station lost attitude control for 45 minutes with potentially disastrous consequences. Motivated by this scenario, we investigate the continued capability of control systems to perform their task despite partial loss of authority over their actuators. We say that a system is resilient to such a malfunction if for any undesirable inputs and any target state there exists an admissible control driving the state to the target. Building on controllability conditions and differential games theory, we establish a necessary and sufficient condition for the resilience of linear systems. As their task might be time-constrained, ensuring completion alone is not sufficient. We also want to estimate how much slower the malfunctioning system is compared to its nominal performance. Relying on Lyapunov theory we derive analytical bounds on the reach times of the nominal and malfunctioning systems in order to quantify their resilience. We illustrate our work on the ADMIRE fighter jet model and on a temperature control system.
线性系统对部分失去控制权限的弹性
在失去对Nauka模块推进器的控制权后,国际空间站失去了45分钟的姿态控制,这可能带来灾难性的后果。在这种情况下,我们研究了控制系统在部分失去执行器权限的情况下执行任务的持续能力。如果对于任何不期望的输入和任何目标状态存在一个可接受的控制将状态驱动到目标,我们说系统对这种故障是有弹性的。利用可控性条件和微分对策理论,建立了线性系统具有弹性的充分必要条件。由于他们的任务可能有时间限制,仅确保完成是不够的。我们还想估计出故障系统与其名义性能相比慢了多少。依靠李亚普诺夫理论,我们导出了名义和故障系统的到达时间的分析界,以量化它们的弹性。我们用钦佩战斗机模型和温度控制系统来说明我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信