Power and Chebyshev Series Transformation Formulas with Applications to Solving Ordinary Differential Equations via the Fröbenius and Taylor’s Methods

H. Nyengeri, R. Nizigiyimana, Jean-Pierre Mutankana, Henry Bayaga, Ferdinand Bayubahe
{"title":"Power and Chebyshev Series Transformation Formulas with Applications to Solving Ordinary Differential Equations via the Fröbenius and Taylor’s Methods","authors":"H. Nyengeri, R. Nizigiyimana, Jean-Pierre Mutankana, Henry Bayaga, Ferdinand Bayubahe","doi":"10.4236/OALIB.1107142","DOIUrl":null,"url":null,"abstract":"In this paper, we present formulas that turn finite power series into series of shifted Chebyshev polynomials of the first kind. Thereafter, we derive formulas for coefficients of economized power series obtained by truncating the resulting Chebyshev series. To illustrate the utility of our formulas, we apply them to the solution of first order ordinary differential equations via Taylor methods and to solving the Schr?dinger equation (SE) for a spherically symmetric hyperbolic potential via the Fr?benius method. In each of the two applications, we show that the use of our formulas makes it possible to reduce the computing time, while preserving the accuracy of the results.","PeriodicalId":19593,"journal":{"name":"Open Access Library Journal","volume":"10 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Library Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OALIB.1107142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present formulas that turn finite power series into series of shifted Chebyshev polynomials of the first kind. Thereafter, we derive formulas for coefficients of economized power series obtained by truncating the resulting Chebyshev series. To illustrate the utility of our formulas, we apply them to the solution of first order ordinary differential equations via Taylor methods and to solving the Schr?dinger equation (SE) for a spherically symmetric hyperbolic potential via the Fr?benius method. In each of the two applications, we show that the use of our formulas makes it possible to reduce the computing time, while preserving the accuracy of the results.
幂和切比雪夫级数变换公式及其在Fröbenius和泰勒方法求解常微分方程中的应用
本文给出了将有限幂级数转化为第一类移位切比雪夫多项式级数的公式。在此基础上,推导了截断切比雪夫级数得到的节电级数的系数公式。为了说明我们的公式的实用性,我们将它们应用于通过泰勒方法求解一阶常微分方程和求解Schr?经Fr?的球对称双曲势的dinger方程benius方法。在这两个应用程序中,我们表明使用我们的公式可以减少计算时间,同时保持结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信