Efficiently Measure the Topologies of Large-Scale Networks Under the Guidance of Neural Network Gradients

Gaolei Fei;Zeyu Li;Yunpeng Zhou;Xuemeng Zhai;Jian Ye;Guangmin Hu
{"title":"Efficiently Measure the Topologies of Large-Scale Networks Under the Guidance of Neural Network Gradients","authors":"Gaolei Fei;Zeyu Li;Yunpeng Zhou;Xuemeng Zhai;Jian Ye;Guangmin Hu","doi":"10.1109/LNET.2023.3301008","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a novel network topology measurement method called the neural network gradient-guided method (NGM), which can use traceroutes to efficiently collect topological information (IPs and links) by selecting appropriate destination IPs. In this method, the mapping between probing destination IPs and probing revenues is modelled into a multiclassification problem using a neural network model, and networks are iteratively probed under the guidance of the neural network gradients. Experimental results in real networks demonstrated that NGM can collect more IPs and links by comparing with the methods that randomly selects IPs and subnets for probing.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"250-254"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10201907/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a novel network topology measurement method called the neural network gradient-guided method (NGM), which can use traceroutes to efficiently collect topological information (IPs and links) by selecting appropriate destination IPs. In this method, the mapping between probing destination IPs and probing revenues is modelled into a multiclassification problem using a neural network model, and networks are iteratively probed under the guidance of the neural network gradients. Experimental results in real networks demonstrated that NGM can collect more IPs and links by comparing with the methods that randomly selects IPs and subnets for probing.
在神经网络梯度的指导下有效测量大规模网络的拓扑结构
在这封信中,我们提出了一种名为神经网络梯度引导法(NGM)的新型网络拓扑测量方法,该方法可通过选择适当的目标 IP,利用跟踪路由有效地收集拓扑信息(IP 和链接)。在这种方法中,探测目标 IP 与探测收入之间的映射被模拟成一个使用神经网络模型的多分类问题,并在神经网络梯度的引导下对网络进行迭代探测。真实网络的实验结果表明,与随机选择 IP 和子网进行探测的方法相比,NGM 可以收集更多的 IP 和链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信