Oyindamola Obisesan , Ramadan Ahmed , Mahmood Amani
{"title":"The effects of pressure and column height on drainage behavior of oilfield foams","authors":"Oyindamola Obisesan , Ramadan Ahmed , Mahmood Amani","doi":"10.1016/j.upstre.2022.100076","DOIUrl":null,"url":null,"abstract":"<div><p><span>Unstable foams quickly lose their valuable properties. This article presents the results of an experimental study conducted on the drainage of aqueous foams at elevated pressures. During the investigation, the foam was generated and circulated in a flow loop. First, its rheology was measured to ensure proper foam generation. Then, its drainage was determined by trapping it in a vertical test section and measuring the pressure profile. The results show that increasing pressure reduces foam drainage, indicating foam stabilization at high pressures. In addition, column height decreases foam drainage because the </span>drainage rate varies along the axis of the column.</p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"9 ","pages":"Article 100076"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666260422000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
Unstable foams quickly lose their valuable properties. This article presents the results of an experimental study conducted on the drainage of aqueous foams at elevated pressures. During the investigation, the foam was generated and circulated in a flow loop. First, its rheology was measured to ensure proper foam generation. Then, its drainage was determined by trapping it in a vertical test section and measuring the pressure profile. The results show that increasing pressure reduces foam drainage, indicating foam stabilization at high pressures. In addition, column height decreases foam drainage because the drainage rate varies along the axis of the column.