Jeremiah R. Barr, Leonardo A. Cament, K. Bowyer, P. Flynn
{"title":"Active Clustering with Ensembles for Social structure extraction","authors":"Jeremiah R. Barr, Leonardo A. Cament, K. Bowyer, P. Flynn","doi":"10.1109/WACV.2014.6835999","DOIUrl":null,"url":null,"abstract":"We introduce a method for extracting the social network structure for the persons appearing in a set of video clips. Individuals are unknown, and are not matched against known enrollments. An identity cluster representing an individual is formed by grouping similar-appearing faces from different videos. Each identity cluster is represented by a node in the social network. Two nodes are linked if the faces from their clusters appeared together in one or more video frames. Our approach incorporates a novel active clustering technique to create more accurate identity clusters based on feedback from the user about ambiguously matched faces. The final output consists of one or more network structures that represent the social group(s), and a list of persons who potentially connect multiple social groups. Our results demonstrate the efficacy of the proposed clustering algorithm and network analysis techniques.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"9 1","pages":"969-976"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We introduce a method for extracting the social network structure for the persons appearing in a set of video clips. Individuals are unknown, and are not matched against known enrollments. An identity cluster representing an individual is formed by grouping similar-appearing faces from different videos. Each identity cluster is represented by a node in the social network. Two nodes are linked if the faces from their clusters appeared together in one or more video frames. Our approach incorporates a novel active clustering technique to create more accurate identity clusters based on feedback from the user about ambiguously matched faces. The final output consists of one or more network structures that represent the social group(s), and a list of persons who potentially connect multiple social groups. Our results demonstrate the efficacy of the proposed clustering algorithm and network analysis techniques.