Hydrodynamic normalization conditions in the theory of degenerate Beltrami equations

V. Gutlyanskiĭ, V. Ryazanov, E. Sevost’yanov, E. Yakubov
{"title":"Hydrodynamic normalization conditions in the theory of degenerate Beltrami equations","authors":"V. Gutlyanskiĭ, V. Ryazanov, E. Sevost’yanov, E. Yakubov","doi":"10.15407/dopovidi2023.02.010","DOIUrl":null,"url":null,"abstract":"We study the existence of normalized homeomorphic solutions for the degenerate Beltrami equation fz = μ(z )f  in the whole complex plane C , assuming that its measurable coefficient μ(z ), | μ(z ) |<1 a. e., has compact support and the degeneration of the equation is controlled by the tangential dilatation quotient KT μ (z , z0) . We show that if KT μ (z , z0) has bounded or finite mean oscillation dominants, or satisfies the Lehto type integral divergence condition, then the Beltrami equation admits a regular homeomorphic   W1,1loc solution f with the hydrodynamic normalization at infinity. We also give integral criteria of Calderon-Zygmund or Orlicz types for the existence of the normalized solutions in terms of KT μ (z , z0) and the maximal dilatation Kμ (z ) .","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2023.02.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the existence of normalized homeomorphic solutions for the degenerate Beltrami equation fz = μ(z )f  in the whole complex plane C , assuming that its measurable coefficient μ(z ), | μ(z ) |<1 a. e., has compact support and the degeneration of the equation is controlled by the tangential dilatation quotient KT μ (z , z0) . We show that if KT μ (z , z0) has bounded or finite mean oscillation dominants, or satisfies the Lehto type integral divergence condition, then the Beltrami equation admits a regular homeomorphic   W1,1loc solution f with the hydrodynamic normalization at infinity. We also give integral criteria of Calderon-Zygmund or Orlicz types for the existence of the normalized solutions in terms of KT μ (z , z0) and the maximal dilatation Kμ (z ) .
退化Beltrami方程理论中的水动力归一化条件
研究了简并Beltrami方程fz = μ(z)f在整个复平面C上的归一化同胚解的存在性,假设其可测系数μ(z) | μ(z) |<1 a. e,有紧支撑,方程的简并性由切向扩张商KT μ(z, z0)控制。我们证明了如果KT μ (z, z0)具有有界或有限平均振荡优势,或满足Lehto型积分散度条件,则Beltrami方程有一个正则同纯解w1,1loc,且在无穷远处具有水动力归一化。我们还给出了关于KT μ (z, z0)和最大膨胀Kμ (z)的归一化解的存在性的Calderon-Zygmund或Orlicz型积分判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信