Goldman–Turaev formality implies Kashiwara–Vergne

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Alekseev, Nariya Kawazumi, Y. Kuno, Florian Naef
{"title":"Goldman–Turaev formality implies Kashiwara–Vergne","authors":"A. Alekseev, Nariya Kawazumi, Y. Kuno, Florian Naef","doi":"10.4171/qt/143","DOIUrl":null,"url":null,"abstract":"Let $\\Sigma$ be a compact connected oriented 2-dimensional manifold with non-empty boundary. In our previous work, we have shown that the solution of generalized (higher genus) Kashiwara-Vergne equations for an automorphism $F \\in {\\rm Aut}(L)$ of a free Lie algebra implies an isomorphism between the Goldman-Turaev Lie bialgebra $\\mathfrak{g}(\\Sigma)$ and its associated graded ${\\rm gr}\\, \\mathfrak{g}(\\Sigma)$. In this paper, we prove the converse: if $F$ induces an isomorphism $\\mathfrak{g}(\\Sigma) \\cong {\\rm gr} \\, \\mathfrak{g}(\\Sigma)$, then it satisfies the Kashiwara-Vergne equations up to conjugation. As an application of our results, we compute the degree one non-commutative Poisson cohomology of the Kirillov-Kostant-Souriau double bracket. The main technical tool used in the paper is a novel characterization of conjugacy classes in the free Lie algebra in terms of cyclic words.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Let $\Sigma$ be a compact connected oriented 2-dimensional manifold with non-empty boundary. In our previous work, we have shown that the solution of generalized (higher genus) Kashiwara-Vergne equations for an automorphism $F \in {\rm Aut}(L)$ of a free Lie algebra implies an isomorphism between the Goldman-Turaev Lie bialgebra $\mathfrak{g}(\Sigma)$ and its associated graded ${\rm gr}\, \mathfrak{g}(\Sigma)$. In this paper, we prove the converse: if $F$ induces an isomorphism $\mathfrak{g}(\Sigma) \cong {\rm gr} \, \mathfrak{g}(\Sigma)$, then it satisfies the Kashiwara-Vergne equations up to conjugation. As an application of our results, we compute the degree one non-commutative Poisson cohomology of the Kirillov-Kostant-Souriau double bracket. The main technical tool used in the paper is a novel characterization of conjugacy classes in the free Lie algebra in terms of cyclic words.
设$\Sigma$为具有非空边界的紧连通定向二维流形。在我们之前的工作中,我们已经证明了自由李代数的自同构$F \in {\rm Aut}(L)$的广义(高属)Kashiwara-Vergne方程的解意味着Goldman-Turaev李双代数$\mathfrak{g}(\Sigma)$与其相关的梯度${\rm gr}\, \mathfrak{g}(\Sigma)$之间的同构。在本文中,我们证明了相反的命题:如果$F$诱导出一个同构$\mathfrak{g}(\Sigma) \cong {\rm gr} \, \mathfrak{g}(\Sigma)$,那么它满足Kashiwara-Vergne方程直至共轭。作为我们的结果的一个应用,我们计算了Kirillov-Kostant-Souriau双括号的一次非交换泊松上同调。本文使用的主要技术工具是利用循环词对自由李代数中的共轭类进行新的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信