Neural network credit-risk evaluation model based on back-propagation algorithm

Rongzhou Li, Sulin Pang, Jian-min Xu
{"title":"Neural network credit-risk evaluation model based on back-propagation algorithm","authors":"Rongzhou Li, Sulin Pang, Jian-min Xu","doi":"10.1109/ICMLC.2002.1175325","DOIUrl":null,"url":null,"abstract":"The research establishes a neural network credit-risk evaluation model by using back-propagation algorithm. The model is evaluated by the credits for 120 applicants. The 120 data are separated in three groups: a \"good credit\" group, a \"middle credit\" group and a \"bad credit\" group. The simulation shows that the neural network credit-risk evaluation model has higher classification accuracy compared with the traditional parameter statistical approach, that is linear discriminant analysis. We still give a learning algorithm and a corresponding algorithm of the model.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"39 1","pages":"1702-1706 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1175325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The research establishes a neural network credit-risk evaluation model by using back-propagation algorithm. The model is evaluated by the credits for 120 applicants. The 120 data are separated in three groups: a "good credit" group, a "middle credit" group and a "bad credit" group. The simulation shows that the neural network credit-risk evaluation model has higher classification accuracy compared with the traditional parameter statistical approach, that is linear discriminant analysis. We still give a learning algorithm and a corresponding algorithm of the model.
基于反向传播算法的神经网络信用风险评估模型
利用反向传播算法建立了神经网络信用风险评估模型。该模型由120名申请者的学分来评估。这120个数据被分为三组:“良好信用”组、“中等信用”组和“不良信用”组。仿真结果表明,与传统的参数统计方法即线性判别分析方法相比,神经网络信用风险评估模型具有更高的分类精度。我们还给出了模型的学习算法和相应的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信