Research of the environmental temperature influence on the horizontal displacements of the Dnieper hydroelectric station dam (according to GNSS measurements)

IF 0.3 Q4 REMOTE SENSING
K. Tretyak, B. Palianytsia
{"title":"Research of the environmental temperature influence on the horizontal displacements of the Dnieper hydroelectric station dam (according to GNSS measurements)","authors":"K. Tretyak, B. Palianytsia","doi":"10.2478/rgg-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract The paper studies the relationship between the ambient temperature change and the horizontal displacements on control points of the Dnieper Hydroelectric Station dam from 2016 to 2020. A specially developed software product analyzed the GNSS time series of measurements pre-processed by the GeoMoS system to determine the parameters of seasonal displacements and their relationship with seasonal changes in air temperature. The research established that the influence of ambient temperature in the absence of significant changes in the water level in the upper reservoir determines the cyclicity of dam deformations. It is established that the projections of velocity vectors of reference points in the ETRF-2014 system for the studied period do not exceed the absolute value of 3 mm/month. The directions of the horizontal displacement vectors in the first half of each year are opposite to the directions recorded in the second half. In the first half of the year, the dam’s body shifts towards the reservoir, while in the second half year period, it shifts-backwards. According to the three-year GNSS monitoring of the Dnieper Hydroelectric Station dam, the amplitude of semi-annual horizontal oscillations of the control points relative to the dam axis is from -9.5 to +8 mm. In winter and summer, the horizontal displacements increase from the edges of the dam to its central part, and the amplitudes of the horizontal displacements move vice versa. The obtained data establish a linear analytical relationship between the average temperature and the horizontal displacements of the GNSS control points.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Geodesy and Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rgg-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The paper studies the relationship between the ambient temperature change and the horizontal displacements on control points of the Dnieper Hydroelectric Station dam from 2016 to 2020. A specially developed software product analyzed the GNSS time series of measurements pre-processed by the GeoMoS system to determine the parameters of seasonal displacements and their relationship with seasonal changes in air temperature. The research established that the influence of ambient temperature in the absence of significant changes in the water level in the upper reservoir determines the cyclicity of dam deformations. It is established that the projections of velocity vectors of reference points in the ETRF-2014 system for the studied period do not exceed the absolute value of 3 mm/month. The directions of the horizontal displacement vectors in the first half of each year are opposite to the directions recorded in the second half. In the first half of the year, the dam’s body shifts towards the reservoir, while in the second half year period, it shifts-backwards. According to the three-year GNSS monitoring of the Dnieper Hydroelectric Station dam, the amplitude of semi-annual horizontal oscillations of the control points relative to the dam axis is from -9.5 to +8 mm. In winter and summer, the horizontal displacements increase from the edges of the dam to its central part, and the amplitudes of the horizontal displacements move vice versa. The obtained data establish a linear analytical relationship between the average temperature and the horizontal displacements of the GNSS control points.
环境温度对第聂伯河水电站大坝水平位移的影响研究(基于GNSS测量)
摘要本文研究了2016 - 2020年第聂伯河水电站大坝控制点水平位移与环境温度变化的关系。一个专门开发的软件产品分析了经GeoMoS系统预处理的GNSS测量时间序列,以确定季节性位移参数及其与气温季节变化的关系。研究发现,在上库水位无明显变化的情况下,环境温度的影响决定了大坝变形的周期性。确定了ETRF-2014系统中参考点在研究期间的速度矢量投影不超过3 mm/月的绝对值。每年上半年的水平位移矢量方向与下半年记录的方向相反。在上半年,大坝的主体向水库移动,而在下半年,它向后移动。第聂伯河水电站大坝3年GNSS监测结果显示,各控制点相对于大坝轴线的半年水平振荡幅度为-9.5 ~ +8 mm。在冬季和夏季,水平位移从坝体边缘向坝体中部增大,水平位移幅值则相反。所得数据建立了平均温度与GNSS控制点水平位移之间的线性解析关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
28.60%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信