Novel In-Memory Matrix-Matrix Multiplication with Resistive Cross-Point Arrays

Yan Liao, Huaqiang Wu, W. Wan, Wenqiang Zhang, B. Gao, H. Philip Wong, H. Qian
{"title":"Novel In-Memory Matrix-Matrix Multiplication with Resistive Cross-Point Arrays","authors":"Yan Liao, Huaqiang Wu, W. Wan, Wenqiang Zhang, B. Gao, H. Philip Wong, H. Qian","doi":"10.1109/VLSIT.2018.8510634","DOIUrl":null,"url":null,"abstract":"Resistive cross-point array can be used to implement vector-matrix multiplication in analog fashion. However, the output is in the form of analog current, and thus requires A/D conversion prior to digital storage. This paper develops and demonstrates a novel in-memory matrix-matrix multiplication method (M2M) that can compute and store the result directly inside the memory itself without requiring A/D conversion. Compared with the conventional approach, M2M provides >10 × improvement in energy and area efficiency, and another 2 orders improvement when matrices are low-rank and sparse.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"41 1","pages":"31-32"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Resistive cross-point array can be used to implement vector-matrix multiplication in analog fashion. However, the output is in the form of analog current, and thus requires A/D conversion prior to digital storage. This paper develops and demonstrates a novel in-memory matrix-matrix multiplication method (M2M) that can compute and store the result directly inside the memory itself without requiring A/D conversion. Compared with the conventional approach, M2M provides >10 × improvement in energy and area efficiency, and another 2 orders improvement when matrices are low-rank and sparse.
基于阻性交叉点阵列的新型内存矩阵-矩阵乘法
阻性交叉点阵列可以用模拟方式实现向量矩阵乘法。然而,输出是模拟电流的形式,因此需要在数字存储之前进行A/D转换。本文开发并演示了一种新的内存矩阵-矩阵乘法方法(M2M),该方法可以直接在存储器中计算和存储结果,而无需进行a /D转换。与传统方法相比,M2M在能量效率和面积效率上提高了>10倍,在矩阵低秩稀疏情况下又提高了2个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信