Adsorption Behaviour and Kinetics of Zearalenone on Hydroxyl-Fe-Al-Intercalated Montmorillonite

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
Shengqiong Fang, Yu Xiao, Huiqiang Wang
{"title":"Adsorption Behaviour and Kinetics of Zearalenone on Hydroxyl-Fe-Al-Intercalated Montmorillonite","authors":"Shengqiong Fang, Yu Xiao, Huiqiang Wang","doi":"10.1155/2020/7680738","DOIUrl":null,"url":null,"abstract":"Pristine montmorillonite (Mont) was used as raw materials to prepare hydroxyl-Fe-pillared Mont, hydroxyl-Al-pillared Mont, and hydroxyl-Fe-Al-pillared Mont composites. By varying the OH/Fe and Fe/Al molar ratios during the preparation of the pillared Mont, the adsorption capacity of zearalenone (ZEA) and the kinetics were elucidated. The characterization of X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy reveals the adsorption mechanism of pristine and modified Mont. The results indicated that the ZEA adsorption capacity is Mont (0.05 mg/g) << 1.5OH/Fe-Mont (0.28 mg/g) << OH/Al-Mont (0.51 mg/g) < 0.5Fe/Al-Mont (0.56 mg/g) in the condition of pH = 8 and 37°C, in which both 0.5Fe/Al-Mont and OH/Al-Mont reached maximum adsorption capacity and 1.5OH/Fe-Mont attained 5 times the capacity of Mont. Adsorption isotherm studies revealed that Freundlich adsorption isotherms best represented the experimental data. The kinetic data for ZEA adsorption revealed that the Mont adsorption capacity for ZEA equilibrates in 1 hour and is best described using the pseudo-second-order rate equation. The XRD analysis indicated that the amplification of Fe-dominant pillared Mont interlayer spacing is the main reason for the observed increases in the adsorption capacity of ZEA, while Al-dominant pillared Mont has a relatively stable Keggin structure; therefore, interlayer spacing is not the primary mechanism for changes in the adsorption capacity of both OH/Al-Mont and Al-dominant pillared Mont. An FT-IR analysis demonstrated that cationic exchange was the dominant mechanism that allowed ZEA and hydroxyl-Al ions to enter the Mont interlayers, while this cationic exchange mechanism was not the dominant mechanism used by hydroxyl-Fe entering the Mont layers.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"88 1","pages":"1-15"},"PeriodicalIF":3.9000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/7680738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Pristine montmorillonite (Mont) was used as raw materials to prepare hydroxyl-Fe-pillared Mont, hydroxyl-Al-pillared Mont, and hydroxyl-Fe-Al-pillared Mont composites. By varying the OH/Fe and Fe/Al molar ratios during the preparation of the pillared Mont, the adsorption capacity of zearalenone (ZEA) and the kinetics were elucidated. The characterization of X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy reveals the adsorption mechanism of pristine and modified Mont. The results indicated that the ZEA adsorption capacity is Mont (0.05 mg/g) << 1.5OH/Fe-Mont (0.28 mg/g) << OH/Al-Mont (0.51 mg/g) < 0.5Fe/Al-Mont (0.56 mg/g) in the condition of pH = 8 and 37°C, in which both 0.5Fe/Al-Mont and OH/Al-Mont reached maximum adsorption capacity and 1.5OH/Fe-Mont attained 5 times the capacity of Mont. Adsorption isotherm studies revealed that Freundlich adsorption isotherms best represented the experimental data. The kinetic data for ZEA adsorption revealed that the Mont adsorption capacity for ZEA equilibrates in 1 hour and is best described using the pseudo-second-order rate equation. The XRD analysis indicated that the amplification of Fe-dominant pillared Mont interlayer spacing is the main reason for the observed increases in the adsorption capacity of ZEA, while Al-dominant pillared Mont has a relatively stable Keggin structure; therefore, interlayer spacing is not the primary mechanism for changes in the adsorption capacity of both OH/Al-Mont and Al-dominant pillared Mont. An FT-IR analysis demonstrated that cationic exchange was the dominant mechanism that allowed ZEA and hydroxyl-Al ions to enter the Mont interlayers, while this cationic exchange mechanism was not the dominant mechanism used by hydroxyl-Fe entering the Mont layers.
玉米赤霉烯酮在羟基铁铝插层蒙脱土上的吸附行为及动力学研究
以原始蒙脱土为原料,制备了羟基铁柱蒙脱土、羟基铝柱蒙脱土和羟基铁铝柱蒙脱土复合材料。通过改变OH/Fe和Fe/Al的摩尔比,研究了柱状Mont对玉米赤霉烯酮(ZEA)的吸附能力和动力学。x射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)表征揭示了原始和改性Mont的吸附机理。结果表明:在pH = 8和37℃条件下,ZEA吸附量为Mont (0.05 mg/g) << 1.5OH/Fe-Mont (0.28 mg/g) << OH/Al-Mont (0.51 mg/g) < 0.5Fe/Al-Mont (0.56 mg/g),其中0.5Fe/Al-Mont和OH/Al-Mont均达到最大吸附量,1.5OH/Fe-Mont达到Mont的5倍。吸附等温线研究表明Freundlich吸附等温线最能代表实验数据。ZEA吸附的动力学数据表明,ZEA对Mont的吸附量在1 h内达到平衡,用拟二级速率方程最能描述吸附量。XRD分析表明,Fe-dominant柱状Mont层间间距的扩大是ZEA吸附量增加的主要原因,而Al-dominant柱状Mont具有相对稳定的Keggin结构;因此,层间间距不是OH/Al-Mont和Al-dominant柱状Mont吸附能力变化的主要机制。FT-IR分析表明,阳离子交换是ZEA和羟基al离子进入Mont层的主要机制,而这种阳离子交换机制不是羟基fe进入Mont层的主要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信