Early detection of Alzheimer’s: Modalities and Methods

M. Monisha, K. M. Harshitha, N. H. Dhanalakshmi, Kokatam Sai Prakash Reddy, C. Nagarathna, M. Kusuma
{"title":"Early detection of Alzheimer’s: Modalities and Methods","authors":"M. Monisha, K. M. Harshitha, N. H. Dhanalakshmi, Kokatam Sai Prakash Reddy, C. Nagarathna, M. Kusuma","doi":"10.36548/jaicn.2022.1.005","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease belongs to the group of neurodegenerative diseases and is considered as one of the most destructive and severe diseases of the human nervous system. There is presently no quick and cost-effective method for routinely screening individuals of age 65 and older for Alzheimer's disease, the most prevalent type of neurodegenerative dementia. Over 5.2 million Americans already suffer from this condition, with the number anticipated to rise to 7.7 million by 2030. This paper discusses how the use of Machine learning concepts has upgraded the detection of Alzheimer's disease in the early stage.","PeriodicalId":10940,"journal":{"name":"Day 2 Tue, March 22, 2022","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, March 22, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jaicn.2022.1.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease belongs to the group of neurodegenerative diseases and is considered as one of the most destructive and severe diseases of the human nervous system. There is presently no quick and cost-effective method for routinely screening individuals of age 65 and older for Alzheimer's disease, the most prevalent type of neurodegenerative dementia. Over 5.2 million Americans already suffer from this condition, with the number anticipated to rise to 7.7 million by 2030. This paper discusses how the use of Machine learning concepts has upgraded the detection of Alzheimer's disease in the early stage.
阿尔茨海默病的早期检测:方式和方法
阿尔茨海默病属于神经退行性疾病,被认为是人类神经系统最具破坏性和最严重的疾病之一。目前还没有一种快速且经济有效的方法来常规筛查65岁及以上的阿尔茨海默病,这是最常见的一种神经退行性痴呆。超过520万美国人已经患有这种疾病,预计到2030年这一数字将上升到770万。本文讨论了机器学习概念的使用如何在早期阶段升级阿尔茨海默病的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信