Preparation and evaluation of chitosan-alginate/carrageenan hydrogel for oral drug delivery in the treatment of diabetes

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Archana George, P. Shrivastav
{"title":"Preparation and evaluation of chitosan-alginate/carrageenan hydrogel for oral drug delivery in the treatment of diabetes","authors":"Archana George, P. Shrivastav","doi":"10.1177/08839115231183487","DOIUrl":null,"url":null,"abstract":"Marine beds are an untapped resource of bioactive materials which can be explored for drug delivery applications. In the present study, a hydrogel was developed with an optimal concentration of sodium alginate-chitosan core polyelectrolytic complex loaded with anti-diabetic drug metformin and coated with ĸ-Carrageenan as an efficient oral drug delivery vehicle. The formulation was optimized by changing parameters such as concentration of polymers, amount of cross-linker and the type and amount of coating material. The prepared hydrogels were characterized for their structural integrity using instrumental techniques such as FTIR, XRD, DSC, and SEM while the physical properties were assessed by evaluating its thickness, UV barrier ability and swelling degree. In vitro study demonstrated the influence of presence and type of coating material affecting drug delivery process. The study suggested that coating with 3% ĸ-Carrageenan (A19) was found most suitable for oral drug delivery since it could resist diffusion of drug in the stomach (pH 1.2) so that maximum drug could reach the intestine (pH 7.4) for absorption. Metformin loaded hydrogel (A20) released ~49% drug in the simulated gastric fluid (pH 1.2). In the simulated intestinal fluid (pH 7.4) both the hydrogel exhibited a sustained release pattern lasting for more than 4 h. Investigation of drug release kinetics using different mathematical models showed that Higuchi model was the best fit release model with R2 ⩾ 0.973. The results indicated that the prepared hydrogels could be potential drug delivery vehicle toward intestine as well as for extended release to colon targeted drug delivery.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115231183487","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Marine beds are an untapped resource of bioactive materials which can be explored for drug delivery applications. In the present study, a hydrogel was developed with an optimal concentration of sodium alginate-chitosan core polyelectrolytic complex loaded with anti-diabetic drug metformin and coated with ĸ-Carrageenan as an efficient oral drug delivery vehicle. The formulation was optimized by changing parameters such as concentration of polymers, amount of cross-linker and the type and amount of coating material. The prepared hydrogels were characterized for their structural integrity using instrumental techniques such as FTIR, XRD, DSC, and SEM while the physical properties were assessed by evaluating its thickness, UV barrier ability and swelling degree. In vitro study demonstrated the influence of presence and type of coating material affecting drug delivery process. The study suggested that coating with 3% ĸ-Carrageenan (A19) was found most suitable for oral drug delivery since it could resist diffusion of drug in the stomach (pH 1.2) so that maximum drug could reach the intestine (pH 7.4) for absorption. Metformin loaded hydrogel (A20) released ~49% drug in the simulated gastric fluid (pH 1.2). In the simulated intestinal fluid (pH 7.4) both the hydrogel exhibited a sustained release pattern lasting for more than 4 h. Investigation of drug release kinetics using different mathematical models showed that Higuchi model was the best fit release model with R2 ⩾ 0.973. The results indicated that the prepared hydrogels could be potential drug delivery vehicle toward intestine as well as for extended release to colon targeted drug delivery.
壳聚糖-海藻酸盐/卡拉胶水凝胶治疗糖尿病口服给药的制备及评价
海洋床是一种尚未开发的生物活性物质资源,可用于药物输送应用。本研究以最佳浓度的海藻酸钠-壳聚糖为核心,制备了一种以抗糖尿病药物二甲双胍为载体,包裹ĸ-Carrageenan的水凝胶作为有效的口服给药载体。通过改变聚合物的浓度、交联剂的用量、涂层材料的种类和用量等参数,对配方进行了优化。利用FTIR、XRD、DSC和SEM等仪器技术对制备的水凝胶进行了结构完整性表征,并通过厚度、UV阻隔能力和溶胀度对制备的水凝胶进行了物理性能表征。体外实验证明了包衣材料的存在和类型对给药过程的影响。研究发现,3% ĸ-Carrageenan (A19)包衣最适合口服给药,因为它可以抵抗药物在胃(pH 1.2)内的扩散,从而最大限度地到达肠道(pH 7.4)吸收。二甲双胍负载水凝胶(A20)在模拟胃液(pH 1.2)中释放约49%的药物。在模拟肠液(pH 7.4)中,两种水凝胶均表现出持续4小时以上的持续释放模式。使用不同数学模型的药物释放动力学研究表明,Higuchi模型是R2大于或等于0.973的最佳拟合释放模型。结果表明,所制备的水凝胶既可作为潜在的肠道给药载体,也可作为结肠靶向给药的缓释载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信