Redistribution Layer Defect Classification Using Computer Vision Techniques And Machine Learning

Sachin Dangayach, Prayudi Lianto, S. Mishra
{"title":"Redistribution Layer Defect Classification Using Computer Vision Techniques And Machine Learning","authors":"Sachin Dangayach, Prayudi Lianto, S. Mishra","doi":"10.1109/EPTC50525.2020.9315117","DOIUrl":null,"url":null,"abstract":"In the semiconductor industry, defects are yield killers and the detection/classification of which can be expensive as well as time consuming. To overcome this challenge, we propose a solution involving Computer Vision Techniques and Machine Learning to accomplish defect binning procedure in typical wafer-level packaging scenario, focusing on 2um L/S redistribution layer (RDL) features. With this approach, inspection cycle time is reduced, thereby driving faster product development.","PeriodicalId":6790,"journal":{"name":"2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC)","volume":"12 1","pages":"237-241"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC50525.2020.9315117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the semiconductor industry, defects are yield killers and the detection/classification of which can be expensive as well as time consuming. To overcome this challenge, we propose a solution involving Computer Vision Techniques and Machine Learning to accomplish defect binning procedure in typical wafer-level packaging scenario, focusing on 2um L/S redistribution layer (RDL) features. With this approach, inspection cycle time is reduced, thereby driving faster product development.
基于计算机视觉和机器学习的再分配层缺陷分类
在半导体工业中,缺陷是产量杀手,其检测/分类可能既昂贵又耗时。为了克服这一挑战,我们提出了一种涉及计算机视觉技术和机器学习的解决方案,以完成典型晶圆级封装场景中的缺陷分类过程,重点关注2um L/S再分布层(RDL)特征。通过这种方法,减少了检查周期时间,从而推动了更快的产品开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信