Chandana S, Amulya K L, Bhavana A M, Chaithra B, Chaitra S
{"title":"Feasibility Study of Few Mode Fibers as a Sensor","authors":"Chandana S, Amulya K L, Bhavana A M, Chaithra B, Chaitra S","doi":"10.4018/ijbce.2018070102","DOIUrl":null,"url":null,"abstract":"This article describes how few mode fiber (FMF) has found its applications in optical communication systems. We report a novel concept of sensing physiological parameters using FMF, which utilizes Space Division Multiplexing technology (SDM) where SDM supports multiple modes/ paths of fixed bandwidth channels which increases the data carrying capacity in an optical fiber. Here we have considered two linearly polarized (LP) modes namely LP01 and LP11. A segment of FMF is used as sensing element, where it is spliced between two segments of single mode fiber (SMF). The intermodal interference between LP01 mode and LP11 mode of FMF provides an interference spectrum which is sensitive to change in physiological parameters applied on FMF. Hence any change in physiological parameter results to shift in wavelength in interference spectrum which makes FMF as a sensor","PeriodicalId":73426,"journal":{"name":"International journal of biomedical engineering and clinical science","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical engineering and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijbce.2018070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article describes how few mode fiber (FMF) has found its applications in optical communication systems. We report a novel concept of sensing physiological parameters using FMF, which utilizes Space Division Multiplexing technology (SDM) where SDM supports multiple modes/ paths of fixed bandwidth channels which increases the data carrying capacity in an optical fiber. Here we have considered two linearly polarized (LP) modes namely LP01 and LP11. A segment of FMF is used as sensing element, where it is spliced between two segments of single mode fiber (SMF). The intermodal interference between LP01 mode and LP11 mode of FMF provides an interference spectrum which is sensitive to change in physiological parameters applied on FMF. Hence any change in physiological parameter results to shift in wavelength in interference spectrum which makes FMF as a sensor