{"title":"On the modular Jones polynomial","authors":"G. Pagel","doi":"10.5802/crmath.106","DOIUrl":null,"url":null,"abstract":"A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\\geq 1$. In particular, for any $k\\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\geq 1$. In particular, for any $k\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.