{"title":"To Schedule or not to Schedule: The Effects of Course Structure on Programming MOOC Performance","authors":"E. Kaila, Kjell Lemström","doi":"10.15388/infedu.2023.27","DOIUrl":null,"url":null,"abstract":"Massive Open Online Courses (MOOCs) have become hugely popular recently. MOOCs can offer high-quality education for anyone interested and equalize the whole education field. Still, there are different methodologies for running MOOCs. Coming up with the most suitable methodology benefits both students and teachers. In this study, we have limited the methodological focus to observing scheduled and unscheduled instances of similar MOOC courses. While unscheduled MOOC courses can provide flexibility, they also require self-regulated learning strategies for students to succeed. To observe this, we compare the effectiveness of scheduled and unscheduled programming MOOC courses to find the most effective methodology. For this, we compare the pass rates and grade averages of five instances (two unscheduled and three scheduled) of Python and Java programming MOOCs. The results show that while the attendance numbers are higher in the unscheduled versions, in the scheduled instances the pass rate is significantly better, and students’ progression is much swifter. It also seems that the higher proportion of university students enrolled in a MOOC course positively affects the retention rate. Moreover, the students in the recent unscheduled Python version seem to score significantly higher grades than in its scheduled counterpart. Based on our experiments, the scheduled and unscheduled versions complement each other. Hence, we suggest that, whenever feasible, the maximal benefits would be gained if both types of MOOCs are run simultaneously.","PeriodicalId":45270,"journal":{"name":"Informatics in Education","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/infedu.2023.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Massive Open Online Courses (MOOCs) have become hugely popular recently. MOOCs can offer high-quality education for anyone interested and equalize the whole education field. Still, there are different methodologies for running MOOCs. Coming up with the most suitable methodology benefits both students and teachers. In this study, we have limited the methodological focus to observing scheduled and unscheduled instances of similar MOOC courses. While unscheduled MOOC courses can provide flexibility, they also require self-regulated learning strategies for students to succeed. To observe this, we compare the effectiveness of scheduled and unscheduled programming MOOC courses to find the most effective methodology. For this, we compare the pass rates and grade averages of five instances (two unscheduled and three scheduled) of Python and Java programming MOOCs. The results show that while the attendance numbers are higher in the unscheduled versions, in the scheduled instances the pass rate is significantly better, and students’ progression is much swifter. It also seems that the higher proportion of university students enrolled in a MOOC course positively affects the retention rate. Moreover, the students in the recent unscheduled Python version seem to score significantly higher grades than in its scheduled counterpart. Based on our experiments, the scheduled and unscheduled versions complement each other. Hence, we suggest that, whenever feasible, the maximal benefits would be gained if both types of MOOCs are run simultaneously.
期刊介绍:
INFORMATICS IN EDUCATION publishes original articles about theoretical, experimental and methodological studies in the fields of informatics (computer science) education and educational applications of information technology, ranging from primary to tertiary education. Multidisciplinary research studies that enhance our understanding of how theoretical and technological innovations translate into educational practice are most welcome. We are particularly interested in work at boundaries, both the boundaries of informatics and of education. The topics covered by INFORMATICS IN EDUCATION will range across diverse aspects of informatics (computer science) education research including: empirical studies, including composing different approaches to teach various subjects, studying availability of various concepts at a given age, measuring knowledge transfer and skills developed, addressing gender issues, etc. statistical research on big data related to informatics (computer science) activities including e.g. research on assessment, online teaching, competitions, etc. educational engineering focusing mainly on developing high quality original teaching sequences of different informatics (computer science) topics that offer new, successful ways for knowledge transfer and development of computational thinking machine learning of student''s behavior including the use of information technology to observe students in the learning process and discovering clusters of their working design and evaluation of educational tools that apply information technology in novel ways.