{"title":"Antimicrobial activity of Hydroxyapatite nanoparticles prepared from marble wastes","authors":"Y. Algamal, N. M. Khalil, A. Saddiq, A. Baghdadi","doi":"10.3233/mgc-210181","DOIUrl":null,"url":null,"abstract":"This work aims to prepare and characterize the hydroxyapatite (HAP) nanomaterials from marble wastes (the utilization of the building marble waste for reducing the environmental pollution hazards) and to study its capabilities as antimicrobial and antifungal agents of the prepared nanoparticle. The utilization of the marble waste as a source for calcium chloride and to be reacted with sodium hydrogen phosphate, for synthetization of hydroxyapatite nanoparticles, the prepared material is characterized, tested, and analyzed using X-ray diffraction (XRD), Scan Electron Microscope (SEM) with Energy Dispersive X-Ray analysis (EDAX) techniques. The antimicrobial activity of prepared hydroxyapatite nanomaterial is tested using a well diffusion method with different types of bacteria (Gram-negative): Escherichia. Coli, Salmonella paratyphi, Pseudomonas earuginosa, and Alcaligenes aquatilis and bacteria (Gram- positive): Staphylococcus aureus, and Streptococcacea pneumonia. The antifungal efficacy of HAP nanoparticles is tested for different species of Aspergillus niger, Aspergillus flavus, and Penicillium SP. The diameter of the inhibitory zone shows the sensitivity of the microorganism to HAP nanoparticles in a greater inhibition against Gram- positive Staphylococcus aureus and Streptococcacea pneumonia, at 100% DMSO concentration. The diameter of the inhibition zone was 03.70 mm, when compared with other types of bacteria. The diameter of the inhibitory zone showed the sensitivity of the microorganism to HAP nanoparticles in a greater inhibition against Penicillium SP at 100% DMSO concentration, the inhibition zone diameter was 2.20 mm, when compared with other Aspergillus niger and Aspergillus flavus fungal species. Based on obtained results for the HAP nanoparticles prepared from the marble wastes have antibacterial effects on both Gram-negative (E. coli) and Gram-positive (S. aureus) strains.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"95 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210181","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to prepare and characterize the hydroxyapatite (HAP) nanomaterials from marble wastes (the utilization of the building marble waste for reducing the environmental pollution hazards) and to study its capabilities as antimicrobial and antifungal agents of the prepared nanoparticle. The utilization of the marble waste as a source for calcium chloride and to be reacted with sodium hydrogen phosphate, for synthetization of hydroxyapatite nanoparticles, the prepared material is characterized, tested, and analyzed using X-ray diffraction (XRD), Scan Electron Microscope (SEM) with Energy Dispersive X-Ray analysis (EDAX) techniques. The antimicrobial activity of prepared hydroxyapatite nanomaterial is tested using a well diffusion method with different types of bacteria (Gram-negative): Escherichia. Coli, Salmonella paratyphi, Pseudomonas earuginosa, and Alcaligenes aquatilis and bacteria (Gram- positive): Staphylococcus aureus, and Streptococcacea pneumonia. The antifungal efficacy of HAP nanoparticles is tested for different species of Aspergillus niger, Aspergillus flavus, and Penicillium SP. The diameter of the inhibitory zone shows the sensitivity of the microorganism to HAP nanoparticles in a greater inhibition against Gram- positive Staphylococcus aureus and Streptococcacea pneumonia, at 100% DMSO concentration. The diameter of the inhibition zone was 03.70 mm, when compared with other types of bacteria. The diameter of the inhibitory zone showed the sensitivity of the microorganism to HAP nanoparticles in a greater inhibition against Penicillium SP at 100% DMSO concentration, the inhibition zone diameter was 2.20 mm, when compared with other Aspergillus niger and Aspergillus flavus fungal species. Based on obtained results for the HAP nanoparticles prepared from the marble wastes have antibacterial effects on both Gram-negative (E. coli) and Gram-positive (S. aureus) strains.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.