Ricci solitons on pseudo Riemannian generalized symmetric spaces

Amel Bouharis
{"title":"Ricci solitons on pseudo Riemannian generalized symmetric spaces","authors":"Amel Bouharis","doi":"10.31926/but.mif.2022.2.64.2.4","DOIUrl":null,"url":null,"abstract":"We study the geometry of four-dimensional pseudo Riemannian generalized symmetric spaces of type D; whose metric was explicitly described by Cerny and Kowalski. After describing their curvature properties; we classify the Killing vectors field of these spaces and more particularly, we study the existence of non-trivial (i.e., not Einstein) Ricci solitons; we show that these spaces are shrinking or expanding Ricci solitons but never steady. Moreover this Ricci soliton is not a gradient one.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2022.2.64.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the geometry of four-dimensional pseudo Riemannian generalized symmetric spaces of type D; whose metric was explicitly described by Cerny and Kowalski. After describing their curvature properties; we classify the Killing vectors field of these spaces and more particularly, we study the existence of non-trivial (i.e., not Einstein) Ricci solitons; we show that these spaces are shrinking or expanding Ricci solitons but never steady. Moreover this Ricci soliton is not a gradient one.
伪黎曼广义对称空间上的Ricci孤子
研究了D型四维伪黎曼广义对称空间的几何性质;其度量由Cerny和Kowalski明确描述。在描述了它们的曲率特性之后;我们对这些空间的杀戮向量场进行了分类,更具体地说,我们研究了非平凡(即非爱因斯坦)里奇孤子的存在性;我们证明了这些空间是收缩或膨胀的里奇孤子,但从不稳定。而且这个里奇孤子不是梯度孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信