DEVELOPMENT OF LEARNING RULES FOR HIGH-ORDER CELLULAR NEURAL NETWORKS AND APPLICABILITY IN IMAGE PROCESSING

Dương Đức Anh, N. Hoan, Nguyễn Hồng Vũ, Nguyễn Tài Tuyên, Nguyễn Quang Trí
{"title":"DEVELOPMENT OF LEARNING RULES FOR HIGH-ORDER CELLULAR NEURAL NETWORKS AND APPLICABILITY IN IMAGE PROCESSING","authors":"Dương Đức Anh, N. Hoan, Nguyễn Hồng Vũ, Nguyễn Tài Tuyên, Nguyễn Quang Trí","doi":"10.34238/tnu-jst.8087","DOIUrl":null,"url":null,"abstract":"Mục đích của bài viết này là cải tiến một thuật toán học, được phát triển từ thuật toán học Perceptron hồi quy và thuật toán nhận dạng mẫu (dành cho Mạng nơ ron tế bào bậc cao). Phương pháp nghiên cứu của chúng tôi là phát triển lý thuyết học trong mạng nơ ron tế bào bậc cao và thử nghiệm các thuật toán. Kết quả nghiên cứu là hai thuật toán được cải tiến và bộ trọng số, ảnh xử lý được bằng hai thuật toán đó. Tập hợp các trọng số thu được từ thuật toán đã phát triển (tên là Thuật toán học Perceptron hồi quy bậc hai: SORPLA) có thể được sử dụng làm bộ lọc hoặc hạt nhân cho các vấn đề trong xử lý ảnh. Kết luận của bài báo như sau: Thứ nhất, sửa đổi thuật toán RPLA, bổ sung các mẫu bậc cao A và các mẫu bậc cao B; Thứ hai, cải thiện thuật toán xử lý hình ảnh PyCNN. Ngoài ra, bài báo cũng đề xuất khả năng ứng dụng của SORPLA trong phát hiện biên ảnh bằng cách sử dụng tập các trọng số thu được từ thuật toán đã phát triển cho Mạng nơ ron tế bào bậc cao.","PeriodicalId":23148,"journal":{"name":"TNU Journal of Science and Technology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TNU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34238/tnu-jst.8087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mục đích của bài viết này là cải tiến một thuật toán học, được phát triển từ thuật toán học Perceptron hồi quy và thuật toán nhận dạng mẫu (dành cho Mạng nơ ron tế bào bậc cao). Phương pháp nghiên cứu của chúng tôi là phát triển lý thuyết học trong mạng nơ ron tế bào bậc cao và thử nghiệm các thuật toán. Kết quả nghiên cứu là hai thuật toán được cải tiến và bộ trọng số, ảnh xử lý được bằng hai thuật toán đó. Tập hợp các trọng số thu được từ thuật toán đã phát triển (tên là Thuật toán học Perceptron hồi quy bậc hai: SORPLA) có thể được sử dụng làm bộ lọc hoặc hạt nhân cho các vấn đề trong xử lý ảnh. Kết luận của bài báo như sau: Thứ nhất, sửa đổi thuật toán RPLA, bổ sung các mẫu bậc cao A và các mẫu bậc cao B; Thứ hai, cải thiện thuật toán xử lý hình ảnh PyCNN. Ngoài ra, bài báo cũng đề xuất khả năng ứng dụng của SORPLA trong phát hiện biên ảnh bằng cách sử dụng tập các trọng số thu được từ thuật toán đã phát triển cho Mạng nơ ron tế bào bậc cao.
高阶细胞神经网络学习规则的发展及其在图像处理中的应用
本文的目的是改进一种算法,该算法是由感知器回归算法和模式识别算法发展而来的。我们的研究方法是在高级神经元网络中发展理论并测试算法。研究结果表明,这两种算法都得到了改进,并增加了重力,这两种算法都能处理图像。从已经开发的算法中收集的一组权重可以用来过滤或核图像处理中的问题。文章的结论是:第一,修改RPLA算法,增加A阶和B阶模板;第二,改进PyCNN图像处理算法。此外,这篇文章还提出了SORPLA在成像检测中应用的可能性,它使用了从高级神经元网络开发的算法中收集的重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信