Generalized Polynomial Chaos Based Stochastic Collocation on the Uncertainty Quantification of CMOS Active Filter Circuits

Mecit Emre Duman, O. Suvak
{"title":"Generalized Polynomial Chaos Based Stochastic Collocation on the Uncertainty Quantification of CMOS Active Filter Circuits","authors":"Mecit Emre Duman, O. Suvak","doi":"10.23919/ELECO47770.2019.8990660","DOIUrl":null,"url":null,"abstract":"In today’s nanometer-era semiconductor manufacturing technology, quantification of the effects of component-level parameter uncertainties on system operation has become in-dispensible. Well-known brute-force Monte Carlo is still a popular uncertainty quantification technique, but it requires high computational power, rendering it insufficient for the analysis of complex systems. On the other hand, Generalized Polynomial Chaos based stochastic spectral techniques are able to achieve the Monte Carlo accuracy with much less effort in certain situations. In this study, we compute the stochastic characterizations of several multi-component active filter circuits with the gPC-based stochastic collocation technique utilizing our Stokhos-based MAT-LAB/C++ toolbox and present performance comparisons with Monte Carlo along with intuitive and insightful comments.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"8 1","pages":"1051-1055"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In today’s nanometer-era semiconductor manufacturing technology, quantification of the effects of component-level parameter uncertainties on system operation has become in-dispensible. Well-known brute-force Monte Carlo is still a popular uncertainty quantification technique, but it requires high computational power, rendering it insufficient for the analysis of complex systems. On the other hand, Generalized Polynomial Chaos based stochastic spectral techniques are able to achieve the Monte Carlo accuracy with much less effort in certain situations. In this study, we compute the stochastic characterizations of several multi-component active filter circuits with the gPC-based stochastic collocation technique utilizing our Stokhos-based MAT-LAB/C++ toolbox and present performance comparisons with Monte Carlo along with intuitive and insightful comments.
基于广义多项式混沌的CMOS有源滤波电路随机配置的不确定性量化
在当今纳米时代的半导体制造技术中,量化元件级参数不确定性对系统运行的影响已经变得必不可少。众所周知的蛮力蒙特卡罗法仍然是一种流行的不确定性量化方法,但它需要很高的计算能力,使得它不足以分析复杂系统。另一方面,基于广义多项式混沌的随机谱技术在某些情况下能够以更少的努力达到蒙特卡罗精度。在本研究中,我们利用基于stokhos的matlab - lab / c++工具箱,利用基于gpc的随机配置技术计算了几个多分量有源滤波器电路的随机特征,并与蒙特卡罗进行了性能比较,并给出了直观而有见地的评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信