Solid-state electronics and single-molecule biophysics

K. Shepard
{"title":"Solid-state electronics and single-molecule biophysics","authors":"K. Shepard","doi":"10.1109/DRC.2012.6256965","DOIUrl":null,"url":null,"abstract":"Biomolecular systems are traditionally studied using ensemble measurements and fluorescence-based detection. Among the most common in vitro applications are DNA microarrays to identify target gene expression profiles [1] and enzyme-linked immunosorbent assays (ELISA) to identify proteins [2]. While much can be determined with ensemble measurements, scientific and technological interest is rapidly moving to single-molecule techniques. When probing at the single-molecule level, observations can be made about the inter- and intramolecular dynamics that are usually hidden in ensemble measurements. In molecular diagnostic, single-molecule techniques often do not require amplification and simplify sample preparation. The most popular single-molecule techniques based on fluorescence [3, 4] are fundamentally limited in resolution and bandwidth by the countable number of photons emitted by a single fluorophore (typically on the order of 2500 photons/sec). Instrumentation is complex, expensive, and large-form-factor. Furthermore, most optical probes photobleach, limiting observation times and pump powers. Single-molecule measurements of the kinetics of fast biomolecular processes are often unavailable through fluorescent techniques, as they lack the required temporal resolution.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"11 1","pages":"7-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular systems are traditionally studied using ensemble measurements and fluorescence-based detection. Among the most common in vitro applications are DNA microarrays to identify target gene expression profiles [1] and enzyme-linked immunosorbent assays (ELISA) to identify proteins [2]. While much can be determined with ensemble measurements, scientific and technological interest is rapidly moving to single-molecule techniques. When probing at the single-molecule level, observations can be made about the inter- and intramolecular dynamics that are usually hidden in ensemble measurements. In molecular diagnostic, single-molecule techniques often do not require amplification and simplify sample preparation. The most popular single-molecule techniques based on fluorescence [3, 4] are fundamentally limited in resolution and bandwidth by the countable number of photons emitted by a single fluorophore (typically on the order of 2500 photons/sec). Instrumentation is complex, expensive, and large-form-factor. Furthermore, most optical probes photobleach, limiting observation times and pump powers. Single-molecule measurements of the kinetics of fast biomolecular processes are often unavailable through fluorescent techniques, as they lack the required temporal resolution.
固态电子学和单分子生物物理学
生物分子系统传统上使用集合测量和基于荧光的检测来研究。最常见的体外应用是DNA微阵列鉴定靶基因表达谱[1]和酶联免疫吸附试验(ELISA)鉴定蛋白质[2]。虽然集合测量可以确定很多东西,但科学和技术的兴趣正迅速转向单分子技术。在单分子水平上进行探测时,可以观察到通常隐藏在系综测量中的分子间和分子内动力学。在分子诊断中,单分子技术通常不需要扩增和简化样品制备。最流行的基于荧光的单分子技术[3,4]在分辨率和带宽上受到单个荧光团发射的光子数量的限制(通常在2500光子/秒的数量级上)。仪器复杂、昂贵且尺寸大。此外,大多数光学探针会发生光漂白,限制了观察时间和泵浦功率。快速生物分子过程动力学的单分子测量通常无法通过荧光技术实现,因为它们缺乏所需的时间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信