H. Maier, Richard Gawlytta, Andreas Fromm, C. Klose
{"title":"Increasing thermal conductivity in aluminium-copper compound castings: modelling and experiments","authors":"H. Maier, Richard Gawlytta, Andreas Fromm, C. Klose","doi":"10.1080/02670836.2023.2184591","DOIUrl":null,"url":null,"abstract":"Compound cast heat sinks have various advantages over conventionally manufactured ones, but oxides present on the metals and formation of a brittle intermetallic layer (IMC) make casting difficult. In the present study, a novel approach was used that employs a silane-doped argon environment to overcome these issues. Oxidation could be fully suppressed and thermal heat conductivities around 67 W/(m·K) were obtained for the compound zone. The microstructural analysis revealed that the thickness of the IMC layer could be kept below the critical value of 3 µm. Yet, the process window was found to be extremely tight. The modelling revealed that the critical time period for formation of the IMC layer is only on the order of a few 10 s.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"65 1","pages":"1903 - 1913"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2184591","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Compound cast heat sinks have various advantages over conventionally manufactured ones, but oxides present on the metals and formation of a brittle intermetallic layer (IMC) make casting difficult. In the present study, a novel approach was used that employs a silane-doped argon environment to overcome these issues. Oxidation could be fully suppressed and thermal heat conductivities around 67 W/(m·K) were obtained for the compound zone. The microstructural analysis revealed that the thickness of the IMC layer could be kept below the critical value of 3 µm. Yet, the process window was found to be extremely tight. The modelling revealed that the critical time period for formation of the IMC layer is only on the order of a few 10 s.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.