Large-scale synthesis of atomically thin ultrawide bandgap β-Ga2O3 using a liquid gallium squeezing technique

Hyunik Park, Y. Choi, S. Yang, Jinho Bae, Jihyun Kim
{"title":"Large-scale synthesis of atomically thin ultrawide bandgap β-Ga2O3 using a liquid gallium squeezing technique","authors":"Hyunik Park, Y. Choi, S. Yang, Jinho Bae, Jihyun Kim","doi":"10.1116/6.0000927","DOIUrl":null,"url":null,"abstract":"β-Ga2O3, an emerging ultrawide bandgap (UWBG) semiconductor, offers promising properties for next-generation power electronics, chemical sensors, and solar-blind optoelectronics. Scaling down of β-Ga2O3 to the atomic level affords the advantages of two-dimensional (2D) materials, while maintaining the inherent properties of the parent bulk counterpart. Here, we demonstrate a simple approach to synthesize ultrathin millimeter-size β-Ga2O3 sheets using a liquid gallium squeezing technique. The GaOx nanolayer produced by stamping liquid gallium under the Cabrera–Mott oxidation was converted into few-atom-thick β-Ga2O3 via thermal annealing under atmospheric conditions. This approach was also applied to various substrates such as SiO2, Si, graphene, quartz, and sapphire to heteroepitaxially synthesize 2D β-Ga2O3 on a target substrate. Finally, we propose a patterning strategy combining the squeezing technique with conventional lithography to obtain a β-Ga2O3 layer with a controllable thickness and shape. Our synthetic method has the potential to overcome the limitations of conventional β-Ga2O3 growth methods, paving a path for applications in UWBG-based (opto-)electronics with a high throughput in a cost-effective manner.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

β-Ga2O3, an emerging ultrawide bandgap (UWBG) semiconductor, offers promising properties for next-generation power electronics, chemical sensors, and solar-blind optoelectronics. Scaling down of β-Ga2O3 to the atomic level affords the advantages of two-dimensional (2D) materials, while maintaining the inherent properties of the parent bulk counterpart. Here, we demonstrate a simple approach to synthesize ultrathin millimeter-size β-Ga2O3 sheets using a liquid gallium squeezing technique. The GaOx nanolayer produced by stamping liquid gallium under the Cabrera–Mott oxidation was converted into few-atom-thick β-Ga2O3 via thermal annealing under atmospheric conditions. This approach was also applied to various substrates such as SiO2, Si, graphene, quartz, and sapphire to heteroepitaxially synthesize 2D β-Ga2O3 on a target substrate. Finally, we propose a patterning strategy combining the squeezing technique with conventional lithography to obtain a β-Ga2O3 layer with a controllable thickness and shape. Our synthetic method has the potential to overcome the limitations of conventional β-Ga2O3 growth methods, paving a path for applications in UWBG-based (opto-)electronics with a high throughput in a cost-effective manner.
利用液态镓挤压技术大规模合成原子薄超宽带隙β-Ga2O3
β-Ga2O3是一种新兴的超宽带隙(UWBG)半导体,在下一代电力电子、化学传感器和太阳盲光电子领域具有良好的性能。将β-Ga2O3缩小到原子水平提供了二维(2D)材料的优势,同时保持了母体体对应物的固有特性。在这里,我们展示了一种利用液态镓挤压技术合成超薄毫米级β-Ga2O3薄片的简单方法。采用Cabrera-Mott氧化法冲压液态镓制备的GaOx纳米层在常压条件下经热退火转化为低原子厚度的β-Ga2O3。该方法还应用于SiO2、Si、石墨烯、石英和蓝宝石等多种衬底,在目标衬底上异质外延合成2D β-Ga2O3。最后,我们提出了一种将挤压技术与传统光刻技术相结合的制版策略,以获得厚度和形状可控的β-Ga2O3层。我们的合成方法有潜力克服传统β-Ga2O3生长方法的局限性,为以高通量和高成本效益的方式应用于基于uwbg的(光电)电子学铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信