{"title":"Investigating the effects of nano-blast furnace slag powder on the behaviour of composite cement materials","authors":"M. Kadhim, L. M. Hasan, H. Kamal","doi":"10.5604/01.3001.0016.3392","DOIUrl":null,"url":null,"abstract":"Attributable to the depletion of raw materials and for sustainability purposes in construction works. Therefore, this study looked into the effects of nano blast furnace slag (BFS) on the microstructure, mechanical properties, and durability of mortar. BFS was substituted for cement at various weight percentages of 0, 1, 1.5, 3, 5, and 7%.A suspension of water and Nano blast furnace slag was made using ultrasonic mixers to prepare the samples. The suspension was combined with cement and sand using 1 cement, 0.5 water, and 2.75 sand in the mixture to make cement mortar. The mixture was then shaped, left in the mould for 24 hours, and then allowed to cure for 7, 14, 28, 60, and 91 days. SEM was used to investigate the microstructure before and after cement replacement. The mechanical characteristics were evaluated by testing the compressive strength and the surface hardness. While the durability was assessed using the water absorption ratios.The results revealed that increasing the BFS in the mortar improved mechanical characteristics and durability by up to 3% of BFS. Replacing Nano-blast furnace slag for a portion of the cement is a proposed solution to address the problems of environmental pollution and resource consumption caused by cement production.Another sustainable material needs to be used for additional investigation. We may evaluate more properties and use different weight percentages.Each year, a significant amount of slag is produced as a result of the iron industry, endangering the environment. There have been numerous initiatives to reduce slags negative environmental consequences. Using slag to replace some of the cement is one of the options to eliminate this byproduct and reduce excessive cement use.This study investigates the possibility of using a blast furnace blast within the Nanoscale to replace some of the cement used in the construction due to the positive impact on the environment to get rid of industrial byproducts and decrease the use of cement.","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.3392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Attributable to the depletion of raw materials and for sustainability purposes in construction works. Therefore, this study looked into the effects of nano blast furnace slag (BFS) on the microstructure, mechanical properties, and durability of mortar. BFS was substituted for cement at various weight percentages of 0, 1, 1.5, 3, 5, and 7%.A suspension of water and Nano blast furnace slag was made using ultrasonic mixers to prepare the samples. The suspension was combined with cement and sand using 1 cement, 0.5 water, and 2.75 sand in the mixture to make cement mortar. The mixture was then shaped, left in the mould for 24 hours, and then allowed to cure for 7, 14, 28, 60, and 91 days. SEM was used to investigate the microstructure before and after cement replacement. The mechanical characteristics were evaluated by testing the compressive strength and the surface hardness. While the durability was assessed using the water absorption ratios.The results revealed that increasing the BFS in the mortar improved mechanical characteristics and durability by up to 3% of BFS. Replacing Nano-blast furnace slag for a portion of the cement is a proposed solution to address the problems of environmental pollution and resource consumption caused by cement production.Another sustainable material needs to be used for additional investigation. We may evaluate more properties and use different weight percentages.Each year, a significant amount of slag is produced as a result of the iron industry, endangering the environment. There have been numerous initiatives to reduce slags negative environmental consequences. Using slag to replace some of the cement is one of the options to eliminate this byproduct and reduce excessive cement use.This study investigates the possibility of using a blast furnace blast within the Nanoscale to replace some of the cement used in the construction due to the positive impact on the environment to get rid of industrial byproducts and decrease the use of cement.
期刊介绍:
The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]