I. Argyros, Samundra Regmi, Jinny Ann John, Jayakumar Jayaraman
{"title":"Extended Convergence for Two Sixth Order Methods under the Same Weak Conditions","authors":"I. Argyros, Samundra Regmi, Jinny Ann John, Jayakumar Jayaraman","doi":"10.3390/foundations3010012","DOIUrl":null,"url":null,"abstract":"High-convergence order iterative methods play a major role in scientific, computational and engineering mathematics, as they produce sequences that converge and thereby provide solutions to nonlinear equations. The convergence order is calculated using Taylor Series extensions, which require the existence and computation of high-order derivatives that do not occur in the methodology. These results cannot, therefore, ensure that the method converges in cases where there are no such high-order derivatives. However, the method could converge. In this paper, we are developing a process in which both the local and semi-local convergence analyses of two related methods of the sixth order are obtained exclusively from information provided by the operators in the method. Numeric applications supplement the theory.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High-convergence order iterative methods play a major role in scientific, computational and engineering mathematics, as they produce sequences that converge and thereby provide solutions to nonlinear equations. The convergence order is calculated using Taylor Series extensions, which require the existence and computation of high-order derivatives that do not occur in the methodology. These results cannot, therefore, ensure that the method converges in cases where there are no such high-order derivatives. However, the method could converge. In this paper, we are developing a process in which both the local and semi-local convergence analyses of two related methods of the sixth order are obtained exclusively from information provided by the operators in the method. Numeric applications supplement the theory.