Second–order multivalued stochastic differential equations on Riemannian manifolds

F. Bernardin, M. Schatzman, C. Lamarque
{"title":"Second–order multivalued stochastic differential equations on Riemannian manifolds","authors":"F. Bernardin, M. Schatzman, C. Lamarque","doi":"10.1098/rspa.2004.1312","DOIUrl":null,"url":null,"abstract":"The existence and uniqueness of solutions to multivalued stochastic differential equations of the second order on Riemannian manifolds are proved. The class of problem is motivated by rigid body and multibody dynamics with friction and an application to the spherical pendulum with friction is presented.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The existence and uniqueness of solutions to multivalued stochastic differential equations of the second order on Riemannian manifolds are proved. The class of problem is motivated by rigid body and multibody dynamics with friction and an application to the spherical pendulum with friction is presented.
黎曼流形上的二阶多值随机微分方程
证明了黎曼流形上二阶多值随机微分方程解的存在唯一性。这类问题是由刚体和多体摩擦动力学驱动的,并给出了一个在有摩擦的球摆上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信