NLSTT-MRAM: Robust spin transfer torque MRAM using non-local spin injection for write

M. Sharad, G. Panagopoulos, C. Augustine, K. Roy
{"title":"NLSTT-MRAM: Robust spin transfer torque MRAM using non-local spin injection for write","authors":"M. Sharad, G. Panagopoulos, C. Augustine, K. Roy","doi":"10.1109/DRC.2012.6256957","DOIUrl":null,"url":null,"abstract":"In this work we propose a magnetic random access memory (MRAM) bit-cell design based on non-local spin transfer torque (NLSTT). In the proposed bit-cell, the data is written into the free layer of a magnetic tunnel junction (MTJ) using spin diffusion current (non-local spin injection), without injecting charge current into the tunneling oxide. Thus, the reliability issues, related to dielectric breakdown due to high tunneling current density (for high switching speed) are significantly mitigated. Separation of read and write current paths in the bit-cell helps in optimizing read and write separately. Hence, higher MgO thickness can be used for higher cell TMR and higher read disturb margin. Higher MTJ resistance resulting from thicker MgO also lets us use voltage mode sensing, that achieves higher speed for read operation. In the proposed bit-cell, we employ two supplementary spin injectors with tilted axis anisotropy, in order to compensate for the comparatively lower efficiency for non-local spin injection. Analysis of the proposed NLSTT-MRAM bit-cell is done using a physics based simulation framework, benchmarked with experimental data for lateral spin valve (LSV). Apart from high reliability, the proposed bit-cell achieves 110% higher tunnel magneto resistance (TMR) and 4X higher read margin for I ns switching speed as compared to standard I-transistor-I MTJ (1-T I-R) STT -MRAM of similar area.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"117 1","pages":"97-98"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work we propose a magnetic random access memory (MRAM) bit-cell design based on non-local spin transfer torque (NLSTT). In the proposed bit-cell, the data is written into the free layer of a magnetic tunnel junction (MTJ) using spin diffusion current (non-local spin injection), without injecting charge current into the tunneling oxide. Thus, the reliability issues, related to dielectric breakdown due to high tunneling current density (for high switching speed) are significantly mitigated. Separation of read and write current paths in the bit-cell helps in optimizing read and write separately. Hence, higher MgO thickness can be used for higher cell TMR and higher read disturb margin. Higher MTJ resistance resulting from thicker MgO also lets us use voltage mode sensing, that achieves higher speed for read operation. In the proposed bit-cell, we employ two supplementary spin injectors with tilted axis anisotropy, in order to compensate for the comparatively lower efficiency for non-local spin injection. Analysis of the proposed NLSTT-MRAM bit-cell is done using a physics based simulation framework, benchmarked with experimental data for lateral spin valve (LSV). Apart from high reliability, the proposed bit-cell achieves 110% higher tunnel magneto resistance (TMR) and 4X higher read margin for I ns switching speed as compared to standard I-transistor-I MTJ (1-T I-R) STT -MRAM of similar area.
NLSTT-MRAM:使用非局部自旋注入进行写入的鲁棒自旋传递扭矩MRAM
在这项工作中,我们提出了一种基于非局部自旋传递扭矩(NLSTT)的磁随机存取存储器(MRAM)位单元设计。在所提出的位单元中,使用自旋扩散电流(非局部自旋注入)将数据写入磁性隧道结(MTJ)的自由层,而不向隧道氧化物注入电荷电流。因此,可靠性问题,有关介电击穿由于高隧道电流密度(高开关速度)是显著减轻。在位单元中分离读、写电流路径有助于分别优化读、写。因此,更高的氧化石墨烯厚度可以用于更高的电池TMR和更高的读取干扰裕度。更厚的MgO导致更高的MTJ电阻也使我们能够使用电压模式传感,从而实现更高的读取操作速度。为了弥补非局部自旋注入效率较低的缺点,我们在所提出的位单元中采用了两个具有倾斜轴各向异性的互补自旋注入器。利用基于物理的仿真框架对所提出的NLSTT-MRAM位单元进行了分析,并以横向自旋阀(LSV)的实验数据为基准。除了高可靠性之外,与类似面积的标准I-晶体管I- MTJ (1-T - r) STT -MRAM相比,所提出的位单元实现了110%的隧道磁阻(TMR)和4X的I- ns开关速度读取裕度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信