Secure Hybrid Analog and Digital Beamforming for mmWave XR Communications With Mixed-DAC

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Di Wu;Tong Shen;Feng Shu;Yuanyuan Wu;Lingling Zhu;Siling Feng;Mengxing Huang;Jiangzhou Wang
{"title":"Secure Hybrid Analog and Digital Beamforming for mmWave XR Communications With Mixed-DAC","authors":"Di Wu;Tong Shen;Feng Shu;Yuanyuan Wu;Lingling Zhu;Siling Feng;Mengxing Huang;Jiangzhou Wang","doi":"10.1109/JSTSP.2023.3298474","DOIUrl":null,"url":null,"abstract":"To achieve a balance between performance and implementation complexity in extended reality (XR)-aided millimeter wave (mmWave) communication, secure hybrid digital and analog (HDA) beamforming with mixed digital-to-analog converters (DACs) is established by partially replacing costly full-resolution DACs with some cheap low-resolution DACs. We focus on secure HDA beamforming for such a system. Furthermore, XR technology is aided to improve the operating efficiency in this complex scenario. First, a closed-form approximation of the average secrecy rate (ASR) is derived. To maximize ASR with partial eavesdropping channel knowledge available, we propose an algorithm of skillfully utilizing the alternating iteration to design beamformers of analog, confidential message (CM) and artificial noise (AN). Given the analog and CM/AN beamformers, the updated AN/CM beamformer is addressed by a gradient descent algorithm. Then, given the beamformers of CM and AN, Dinkelbach and Majorization-Minimization are combined to optimize analog beamformer. Simulation results show that the proposed algorithm achieves much better ASR performance than existing methods in the medium and high signal-to-noise ratio regions.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10192330/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve a balance between performance and implementation complexity in extended reality (XR)-aided millimeter wave (mmWave) communication, secure hybrid digital and analog (HDA) beamforming with mixed digital-to-analog converters (DACs) is established by partially replacing costly full-resolution DACs with some cheap low-resolution DACs. We focus on secure HDA beamforming for such a system. Furthermore, XR technology is aided to improve the operating efficiency in this complex scenario. First, a closed-form approximation of the average secrecy rate (ASR) is derived. To maximize ASR with partial eavesdropping channel knowledge available, we propose an algorithm of skillfully utilizing the alternating iteration to design beamformers of analog, confidential message (CM) and artificial noise (AN). Given the analog and CM/AN beamformers, the updated AN/CM beamformer is addressed by a gradient descent algorithm. Then, given the beamformers of CM and AN, Dinkelbach and Majorization-Minimization are combined to optimize analog beamformer. Simulation results show that the proposed algorithm achieves much better ASR performance than existing methods in the medium and high signal-to-noise ratio regions.
基于混合dac的毫米波XR通信安全混合模拟和数字波束形成
为了在扩展现实(XR)辅助毫米波(mmWave)通信中实现性能和实现复杂性之间的平衡,使用混合数模转换器(dac)建立了安全的混合数模(HDA)波束形成,方法是用一些廉价的低分辨率dac部分取代昂贵的全分辨率dac。我们专注于这种系统的安全HDA波束形成。此外,XR技术有助于提高这种复杂情况下的操作效率。首先,推导了平均保密率(ASR)的近似近似。为了在获得部分窃听信道知识的情况下最大化ASR,我们提出了一种巧妙地利用交替迭代来设计模拟、机密信息(CM)和人工噪声(an)波束形成器的算法。在模拟波束形成器和CM/AN波束形成器的基础上,采用梯度下降算法对改进后的AN/CM波束形成器进行求解。然后,针对CM波束形成器和AN波束形成器,结合Dinkelbach和最大化最小化方法对模拟波束形成器进行优化。仿真结果表明,该算法在中、高信噪比区域的ASR性能明显优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信