{"title":"Deepfake attribution: On the source identification of artificially generated images","authors":"Brandon Khoo, Raphaël C.-W. Phan, C. H. Lim","doi":"10.1002/widm.1438","DOIUrl":null,"url":null,"abstract":"Synthetic media or \"deepfakes\" are making great advances in visual quality, diversity, and verisimilitude, empowered by large‐scale publicly accessible datasets and rapid technical progress in deep generative modeling. Heralding a paradigm shift in how online content is trusted, researchers in digital image forensics have responded with different proposals to reliably detect AI‐generated images in the wild. However, binary classification of image authenticity is insufficient to regulate the ethical usage of deepfake technology as new applications are developed. This article provides an overview of the major innovations in synthetic forgery detection as of 2020, while highlighting the recent shift in research towards ways to attribute AI‐generated images to their generative sources with evidence. We define the various categories of deepfakes in existence, the subtle processing traces and fingerprints that distinguish AI‐generated images from reality and each other, and the different degrees of attribution possible with current understanding of generative algorithms. Additionally, we describe the limitations of synthetic image recognition methods in practice, the counter‐forensic attacks devised to exploit these limitations, and directions for new research to assure the long‐term relevance of deepfake forensics. Reliable, explainable, and generalizable attribution methods would hold malicious users accountable for AI‐enabled disinformation, grant plausible deniability to appropriate users, and facilitate intellectual property protection of deepfake technology.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"6 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1438","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Synthetic media or "deepfakes" are making great advances in visual quality, diversity, and verisimilitude, empowered by large‐scale publicly accessible datasets and rapid technical progress in deep generative modeling. Heralding a paradigm shift in how online content is trusted, researchers in digital image forensics have responded with different proposals to reliably detect AI‐generated images in the wild. However, binary classification of image authenticity is insufficient to regulate the ethical usage of deepfake technology as new applications are developed. This article provides an overview of the major innovations in synthetic forgery detection as of 2020, while highlighting the recent shift in research towards ways to attribute AI‐generated images to their generative sources with evidence. We define the various categories of deepfakes in existence, the subtle processing traces and fingerprints that distinguish AI‐generated images from reality and each other, and the different degrees of attribution possible with current understanding of generative algorithms. Additionally, we describe the limitations of synthetic image recognition methods in practice, the counter‐forensic attacks devised to exploit these limitations, and directions for new research to assure the long‐term relevance of deepfake forensics. Reliable, explainable, and generalizable attribution methods would hold malicious users accountable for AI‐enabled disinformation, grant plausible deniability to appropriate users, and facilitate intellectual property protection of deepfake technology.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.