Periodic conduction problems: the fast multipole method and convergence of integral equations and lattice sums

G. Rodin, J. Overfelt
{"title":"Periodic conduction problems: the fast multipole method and convergence of integral equations and lattice sums","authors":"G. Rodin, J. Overfelt","doi":"10.1098/rspa.2004.1318","DOIUrl":null,"url":null,"abstract":"This paper presents a version of the fast multipole method (FMM) for integral equations describing conduction through three–dimensional periodic heterogeneous media. The proposed method is based on the standard rather than periodic fundamental solution, and therefore it is very close to the original FMM. In deriving the method, particular attention is paid to convergence of arising integral equations and lattice sums. It is shown that convergence can be achieved without introducing artificial compensatory sources or boundary conditions.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a version of the fast multipole method (FMM) for integral equations describing conduction through three–dimensional periodic heterogeneous media. The proposed method is based on the standard rather than periodic fundamental solution, and therefore it is very close to the original FMM. In deriving the method, particular attention is paid to convergence of arising integral equations and lattice sums. It is shown that convergence can be achieved without introducing artificial compensatory sources or boundary conditions.
周期传导问题:快速多极方法及积分方程和格和的收敛性
本文提出了描述三维周期非均质介质传导的积分方程的快速多极子方法。该方法基于标准解而不是周期基解,因此与原FMM非常接近。在推导该方法时,特别注意了产生的积分方程和格和的收敛性。结果表明,在不引入人工补偿源和边界条件的情况下,可以实现收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信