From Data to Assessment Models, Demonstrated through a Digital Twin of Marine Risers

E. Kharazmi, Zhicheng Wang, Dixia Fan, S. Rudy, T. Sapsis, M. Triantafyllou, G. Karniadakis
{"title":"From Data to Assessment Models, Demonstrated through a Digital Twin of Marine Risers","authors":"E. Kharazmi, Zhicheng Wang, Dixia Fan, S. Rudy, T. Sapsis, M. Triantafyllou, G. Karniadakis","doi":"10.4043/30985-ms","DOIUrl":null,"url":null,"abstract":"\n Assessing the fatigue damage in marine risers due to vortex-induced vibrations (VIV) serves as a comprehensive example of using machine learning methods to derive assessment models of complex systems. A complete characterization of response of such complex systems is usually unavailable despite massive experimental data and computation results. These algorithms can use multi-fidelity data sets from multiple sources, including real-time sensor data from the field, systematic experimental data, and simulation data. Here we develop a three-pronged approach to demonstrate how tools in machine learning are employed to develop data-driven models that can be used for accurate and efficient fatigue damage predictions for marine risers subject to VIV.","PeriodicalId":11184,"journal":{"name":"Day 3 Wed, August 18, 2021","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, August 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30985-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Assessing the fatigue damage in marine risers due to vortex-induced vibrations (VIV) serves as a comprehensive example of using machine learning methods to derive assessment models of complex systems. A complete characterization of response of such complex systems is usually unavailable despite massive experimental data and computation results. These algorithms can use multi-fidelity data sets from multiple sources, including real-time sensor data from the field, systematic experimental data, and simulation data. Here we develop a three-pronged approach to demonstrate how tools in machine learning are employed to develop data-driven models that can be used for accurate and efficient fatigue damage predictions for marine risers subject to VIV.
从数据到评估模型,通过海洋隔水管的数字孪生体进行演示
船舶隔水管因涡激振动(VIV)引起的疲劳损伤评估是使用机器学习方法推导复杂系统评估模型的一个综合例子。尽管有大量的实验数据和计算结果,但通常无法对此类复杂系统的响应进行完整的表征。这些算法可以使用来自多个来源的多保真度数据集,包括来自现场的实时传感器数据、系统实验数据和仿真数据。在这里,我们开发了一种三管齐下的方法来演示如何使用机器学习工具来开发数据驱动模型,该模型可用于对受VIV影响的海洋立管进行准确有效的疲劳损伤预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信