The dynamics of fitness and wealth distributions — a stochastic game-theoretic model

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sylvain Gibaud, J. Weibull
{"title":"The dynamics of fitness and wealth distributions — a stochastic game-theoretic model","authors":"Sylvain Gibaud, J. Weibull","doi":"10.3934/jdg.2022016","DOIUrl":null,"url":null,"abstract":"A model of the dynamics of distributions of individual wealth, or of individual Darwinian fitness, is here developed. Pairs of individuals are recurrently and randomly matched to play a game over a resource. In addition, all individuals have random access to a constant background source, and their fitness or wealth depreciates over time. For brevity, we focus on the well-known Hawk-Dove game. In the base-line model, the probability of winning a fight over a resource is the same for both parties. In an extended version, the individual with higher current fitness or wealth has a higher probability of winning. Analytical results are given for the fitness/wealth distribution at any given time, for the evolution of average fitness/wealth over time, and for the asymptotics with respect to both time and population size. Long-run average fitness/wealth is non-monotonic in the value of the resource, thus providing a potential explanation of the so-called curse of the riches.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2022016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

A model of the dynamics of distributions of individual wealth, or of individual Darwinian fitness, is here developed. Pairs of individuals are recurrently and randomly matched to play a game over a resource. In addition, all individuals have random access to a constant background source, and their fitness or wealth depreciates over time. For brevity, we focus on the well-known Hawk-Dove game. In the base-line model, the probability of winning a fight over a resource is the same for both parties. In an extended version, the individual with higher current fitness or wealth has a higher probability of winning. Analytical results are given for the fitness/wealth distribution at any given time, for the evolution of average fitness/wealth over time, and for the asymptotics with respect to both time and population size. Long-run average fitness/wealth is non-monotonic in the value of the resource, thus providing a potential explanation of the so-called curse of the riches.
适应性和财富分布的动态——一个随机博弈论模型
个人财富分配的动态模型,或个人达尔文适应度的模型,在这里被开发出来。成对的个体会周期性地随机配对,以争夺资源进行游戏。此外,所有个体都可以随机获得一个恒定的背景资源,他们的健康或财富会随着时间的推移而贬值。为简洁起见,我们将重点介绍著名的鹰鸽游戏。在基线模型中,双方赢得资源争夺的概率是相同的。在一个扩展的版本中,具有更高当前健康或财富的个体具有更高的获胜概率。给出了任意给定时间的适应度/财富分布、平均适应度/财富随时间的演化以及关于时间和人口规模的渐近性的分析结果。长期平均健康/财富在资源价值上是非单调的,从而为所谓的财富诅咒提供了一种潜在的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信