Heegaard Floer invariants of contact structures on links of surface singularities

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2018-09-28 DOI:10.4171/QT/153
J'ozsef Bodn'ar, O. Plamenevskaya
{"title":"Heegaard Floer invariants of contact structures on links of surface singularities","authors":"J'ozsef Bodn'ar, O. Plamenevskaya","doi":"10.4171/QT/153","DOIUrl":null,"url":null,"abstract":"Let a contact 3-manifold $(Y, \\xi_0)$ be the link of a normal surface singularity equipped with its canonical contact structure $\\xi_0$. We prove a special property of such contact 3-manifolds of \"algebraic\" origin: the Heegaard Floer invariant $c^+(\\xi_0)\\in HF^+(-Y)$ cannot lie in the image of the $U$-action on $HF^+(-Y)$. It follows that Karakurt's \"height of $U$-tower\" invariants are always 0 for canonical contact structures on singularity links, which contrasts the fact that the height of $U$-tower can be arbitrary for general fillable contact structures. Our proof uses the interplay between the Heegaard Floer homology and N\\'emethi's lattice cohomology.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/153","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let a contact 3-manifold $(Y, \xi_0)$ be the link of a normal surface singularity equipped with its canonical contact structure $\xi_0$. We prove a special property of such contact 3-manifolds of "algebraic" origin: the Heegaard Floer invariant $c^+(\xi_0)\in HF^+(-Y)$ cannot lie in the image of the $U$-action on $HF^+(-Y)$. It follows that Karakurt's "height of $U$-tower" invariants are always 0 for canonical contact structures on singularity links, which contrasts the fact that the height of $U$-tower can be arbitrary for general fillable contact structures. Our proof uses the interplay between the Heegaard Floer homology and N\'emethi's lattice cohomology.
表面奇点连杆上接触结构的保花不变量
设接触3流形$(Y, \xi_0)$为具有规范接触结构$\xi_0$的法向曲面奇点的连杆。我们证明了这类“代数”起源的接触3-流形的一个特殊性质:HF^+(-Y)$中的Heegaard花不变量$c^+(\xi_0) $不可能存在于HF^+(-Y)$上的$U$-作用的像中。由此可见,对于奇点连杆上的规范接触结构,Karakurt的“U塔高度”不变量总是0,这与一般可填充接触结构的U塔高度可以任意的事实形成了对比。我们的证明利用了Heegaard flower同调和N\ \ meethi的格上同调之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信