SSNet: Scale Selection Network for Online 3D Action Prediction

Jun Liu, Amir Shahroudy, G. Wang, Ling-yu Duan, A. Kot
{"title":"SSNet: Scale Selection Network for Online 3D Action Prediction","authors":"Jun Liu, Amir Shahroudy, G. Wang, Ling-yu Duan, A. Kot","doi":"10.1109/CVPR.2018.00871","DOIUrl":null,"url":null,"abstract":"In action prediction (early action recognition), the goal is to predict the class label of an ongoing action using its observed part so far. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the time axis. As there are significant temporal scale variations of the observed part of the ongoing action at different progress levels, we propose a novel window scale selection scheme to make our network focus on the performed part of the ongoing action and try to suppress the noise from the previous actions at each time step. Furthermore, an activation sharing scheme is proposed to deal with the overlapping computations among the adjacent steps, which allows our model to run more efficiently. The extensive experiments on two challenging datasets show the effectiveness of the proposed action prediction framework.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"34 1","pages":"8349-8358"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

In action prediction (early action recognition), the goal is to predict the class label of an ongoing action using its observed part so far. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the time axis. As there are significant temporal scale variations of the observed part of the ongoing action at different progress levels, we propose a novel window scale selection scheme to make our network focus on the performed part of the ongoing action and try to suppress the noise from the previous actions at each time step. Furthermore, an activation sharing scheme is proposed to deal with the overlapping computations among the adjacent steps, which allows our model to run more efficiently. The extensive experiments on two challenging datasets show the effectiveness of the proposed action prediction framework.
SSNet:用于在线三维动作预测的尺度选择网络
在动作预测(早期动作识别)中,目标是使用到目前为止观察到的部分来预测正在进行的动作的类标签。本文主要研究流三维骨架序列的在线动作预测。通过时间轴上的滑动窗口,引入扩展卷积网络在时间维度上对运动动力学进行建模。由于正在进行的动作的观察部分在不同的进度水平上存在显著的时间尺度变化,我们提出了一种新的窗口尺度选择方案,使我们的网络专注于正在进行的动作的执行部分,并试图在每个时间步抑制来自先前动作的噪声。此外,提出了一种激活共享方案来处理相邻步骤之间的重叠计算,从而提高了模型的运行效率。在两个具有挑战性的数据集上进行的大量实验表明了所提出的动作预测框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信