Expanded area metrology for tip-based wafer inspection in the nanomanufacturing of electronic devices

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tsung-Fu Yao, Liam G. Connolly, M. Cullinan
{"title":"Expanded area metrology for tip-based wafer inspection in the nanomanufacturing of electronic devices","authors":"Tsung-Fu Yao, Liam G. Connolly, M. Cullinan","doi":"10.1117/1.JMM.18.3.034003","DOIUrl":null,"url":null,"abstract":"Abstract. Effective measurement of fabricated structures is critical to the cost-effective production of modern electronics. However, traditional tip-based approaches are poorly suited to in-line inspection at current manufacturing speeds. We present the development of a large area inspection method to address throughput constraints due to the narrow field-of-view (FOV) inherent in conventional tip-based measurement. The proposed proof-of-concept system can perform simultaneous, noncontact inspection at multiple hotspots using single-chip atomic force microscopes (sc-AFMs) with nanometer-scale resolution. The tool has a throughput of ∼60  wafers  /  h for five-site measurement on a 4-in. wafer, corresponding to a nanometrology throughput of ∼66,000  μm2  /  h. This methodology can be used to not only locate subwavelength “killer” defects but also to measure topography for in-line process control. Further, a postprocessing workflow is developed to stitch together adjacent scans measured in a serial fashion and expand the FOV of each individual sc-AFM such that total inspection area per cycle can be balanced with throughput to perform larger area inspection for uses such as defect root-cause analysis.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"8 1","pages":"034003 - 034003"},"PeriodicalIF":1.5000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.3.034003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract. Effective measurement of fabricated structures is critical to the cost-effective production of modern electronics. However, traditional tip-based approaches are poorly suited to in-line inspection at current manufacturing speeds. We present the development of a large area inspection method to address throughput constraints due to the narrow field-of-view (FOV) inherent in conventional tip-based measurement. The proposed proof-of-concept system can perform simultaneous, noncontact inspection at multiple hotspots using single-chip atomic force microscopes (sc-AFMs) with nanometer-scale resolution. The tool has a throughput of ∼60  wafers  /  h for five-site measurement on a 4-in. wafer, corresponding to a nanometrology throughput of ∼66,000  μm2  /  h. This methodology can be used to not only locate subwavelength “killer” defects but also to measure topography for in-line process control. Further, a postprocessing workflow is developed to stitch together adjacent scans measured in a serial fashion and expand the FOV of each individual sc-AFM such that total inspection area per cycle can be balanced with throughput to perform larger area inspection for uses such as defect root-cause analysis.
电子器件纳米制造中基于尖端的晶圆检测的扩展面积计量
摘要制造结构的有效测量对现代电子产品的经济高效生产至关重要。然而,传统的基于提示的方法不适合当前制造速度下的在线检测。我们提出了一种大面积检测方法的发展,以解决由于传统的基于尖端的测量固有的窄视场(FOV)而导致的吞吐量限制。提出的概念验证系统可以使用纳米级分辨率的单芯片原子力显微镜(sc-AFMs)在多个热点上同时进行非接触检测。该工具的吞吐量为~ 60片/小时,可在4英寸的5个位置进行测量。晶圆片,对应的纳米通量为~ 66,000 μm2 / h。该方法不仅可用于定位亚波长“杀手”缺陷,还可用于测量在线过程控制的形貌。此外,开发了后处理工作流程,将以串行方式测量的相邻扫描拼接在一起,并扩展每个sc-AFM的视场,以便每个周期的总检查面积可以与吞吐量相平衡,以执行更大面积的检查,例如缺陷根本原因分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信