Homogenization of non-local nonlinear p-Laplacian equation with variable index and periodic structure

IF 0.5 4区 数学 Q3 MATHEMATICS
Junlong Chen, Yanbin Tang
{"title":"Homogenization of non-local nonlinear p-Laplacian equation with variable index and periodic structure","authors":"Junlong Chen, Yanbin Tang","doi":"10.1063/5.0091156","DOIUrl":null,"url":null,"abstract":"This paper deals with the homogenization of a one-dimensional nonlinear non-local variable index p(x)-Laplacian operator Lɛ with a periodic structure and convolution kernel. By constructing a scale diffusive model and two corrector functions χ1 and χ2, as scale parameter ɛ → 0+, we first obtain that the limit operator L is a p-Laplacian operator with constant exponent and coefficients such that Lu=Rddx(|u′(x)|p−2u′(x)). Then, for a given function f∈Lq(R)(q=pp−1), we prove the asymptotic behavior of the solution uɛ(x) to the equation (Lɛ − I)uɛ(x) = f(x) such that uε(x)=u(x)+εχ1(xε)u′(x)+ε2χ2(xε)u″(x)+o(1)(ε→0+) in Lp(R), where u(x) is the solution of equation (L − I)u(x) = f(x).","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0091156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with the homogenization of a one-dimensional nonlinear non-local variable index p(x)-Laplacian operator Lɛ with a periodic structure and convolution kernel. By constructing a scale diffusive model and two corrector functions χ1 and χ2, as scale parameter ɛ → 0+, we first obtain that the limit operator L is a p-Laplacian operator with constant exponent and coefficients such that Lu=Rddx(|u′(x)|p−2u′(x)). Then, for a given function f∈Lq(R)(q=pp−1), we prove the asymptotic behavior of the solution uɛ(x) to the equation (Lɛ − I)uɛ(x) = f(x) such that uε(x)=u(x)+εχ1(xε)u′(x)+ε2χ2(xε)u″(x)+o(1)(ε→0+) in Lp(R), where u(x) is the solution of equation (L − I)u(x) = f(x).
具有变指标和周期结构的非局部非线性p-拉普拉斯方程的均匀化
研究了具有周期结构和卷积核的一维非线性非局部变量指标p(x)-拉普拉斯算子L /的齐次化问题。通过构造尺度扩散模型和两个校正函数χ1和χ2,作为尺度参数,我们首先得到了极限算子L是一个常指数常系数的p-拉普拉斯算子,使得Lu=Rddx(|u′(x)|p−2u′(x))。然后,对于给定函数f∈Lq(R)(q=pp−1),证明了方程(L ε−I)u ε(x)= f(x)的解uε(x)的渐近性,使得方程(L ε−I)u ε(x)=u(x)在Lp(R)中uε(x)=u(x)+ε 2χ2(xε)u″(x)+o(1)(ε→0+),其中u(x)是方程(L−I)u(x) = f(x)的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信