Total length of the genealogical tree for quadratic stationary continuous-state branching processes

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Hongwei Bi, Jean-François Delmas
{"title":"Total length of the genealogical tree for quadratic stationary continuous-state branching processes","authors":"Hongwei Bi, Jean-François Delmas","doi":"10.1214/15-AIHP683","DOIUrl":null,"url":null,"abstract":"We prove the existence of the total length process for the genealogical tree of a population model with random size given by a quadratic stationary continuous-state branching processes. We also give, for the one-dimensional marginal, its Laplace transform as well as the fluctuation of the corresponding convergence. This result is to be compared with the one obtained by Pfaffelhuber and Wakolbinger for constant size population associated to the Kingman coalescent. We also give a time reversal property of the number of ancestors process at all time, and give a description of the so-called lineage tree in this model.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"65 1","pages":"1321-1350"},"PeriodicalIF":1.2000,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP683","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

Abstract

We prove the existence of the total length process for the genealogical tree of a population model with random size given by a quadratic stationary continuous-state branching processes. We also give, for the one-dimensional marginal, its Laplace transform as well as the fluctuation of the corresponding convergence. This result is to be compared with the one obtained by Pfaffelhuber and Wakolbinger for constant size population associated to the Kingman coalescent. We also give a time reversal property of the number of ancestors process at all time, and give a description of the so-called lineage tree in this model.
二次平稳连续状态分支过程谱系树的总长度
用二次平稳连续状态分支过程给出了具有随机大小的种群模型的系谱树的总长度过程的存在性。对于一维边缘,我们也给出了它的拉普拉斯变换以及相应收敛的涨落。这一结果将与Pfaffelhuber和Wakolbinger对与Kingman聚结有关的等大小种群所得到的结果进行比较。我们还给出了在任何时刻祖先进程数量的时间反转性质,并给出了该模型中所谓的谱系树的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信