{"title":"Weakly distinguishing graph polynomials on addable properties","authors":"J. Makowsky, Vsevolod Rakita","doi":"10.2140/moscow.2020.9.333","DOIUrl":null,"url":null,"abstract":"A graph polynomial $P$ is weakly distinguishing if for almost all finite graphs $G$ there is a finite graph $H$ that is not isomorphic to $G$ with $P(G)=P(H)$. It is weakly distinguishing on a graph property $\\mathcal{C}$ if for almost all finite graphs $G\\in\\mathcal{C}$ there is $H \\in \\mathcal{C}$ that is not isomorphic to $G$ with $P(G)=P(H)$. We give sufficient conditions on a graph property $\\mathcal{C}$ for the characteristic, clique, independence, matching, and domination and $\\xi$ polynomials, as well as the Tutte polynomial and its specialisations, to be weakly distinguishing on $\\mathcal{C}$. One such condition is to be addable and small in the sense of C. McDiarmid, A. Steger and D. Welsh (2005). Another one is to be of genus at most $k$.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A graph polynomial $P$ is weakly distinguishing if for almost all finite graphs $G$ there is a finite graph $H$ that is not isomorphic to $G$ with $P(G)=P(H)$. It is weakly distinguishing on a graph property $\mathcal{C}$ if for almost all finite graphs $G\in\mathcal{C}$ there is $H \in \mathcal{C}$ that is not isomorphic to $G$ with $P(G)=P(H)$. We give sufficient conditions on a graph property $\mathcal{C}$ for the characteristic, clique, independence, matching, and domination and $\xi$ polynomials, as well as the Tutte polynomial and its specialisations, to be weakly distinguishing on $\mathcal{C}$. One such condition is to be addable and small in the sense of C. McDiarmid, A. Steger and D. Welsh (2005). Another one is to be of genus at most $k$.